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~ sing ~he discrete path formalism, we obtain a topological solution for ordinary, as well as partial, 
lm~r mhomogeneous finite difference equations with variable coefficients and arbitrarily 
specIfied boundary conditions. The solution is homomorphic to a set of discrete paths constructed 
from a set of vectors determined by the level differences of the equation. 

I. INTRODUCTION 

A certain amount ofprogressl
.
2

,3 has been made in 
studying the solutions of finite difference equations, by mak­
ing use of the so called combinatorics functions. These are 
highly generalized factorial expressions4 that were originally 
obtained,1 by a homomorphism, from the restricted parti­
tionsS of an interval into classes. These classes are deter­
mined by the level differences of the equation. Subsequently, 
the formalism was generalized and made more flexible by 
replacing the restricted partitions by discrete paths, thus 
leading to the so called discrete path approach2 which is a 
topological, graph theoretic6 method, requiring a certain 
amount of combinatorial analysis.7 Recently, the discrete 
path formalism was used to derive an explicit topological 
solution for systems of simultaneous linear equations3 by 
establishing a homomorphism between the solution Xn ,and 
the set of paths, defined on the corresponding signal flow 
graph,8 from all sources to vertex n. The homomorphism 
defines a value function, and the solution is the value of the 
above set of paths. 

The purpose of this paper is to apply the above topologi­
cal solution to the case of ordinary, as well as partial, finite 
difference equations. A linear finite difference equation is a 
system of simultaneous linear equations characterized by a 
high degree of interdependency among the coefficients. This 
in turn is reflected by a high degree of symmetry in the corre­
sponding signal glow graph, and permits us to greatly sim­
plify the topological solution. This work constitutes a natu­
ral generalization of the solution obtained in Ref. 2, and is 
one more step in the process of enlarging the class of finite 
difference equations for which a general solution is known, 
and consequently enlarging the scope of physical problems 
that can be solved analytically. 

Special cases, of the solution presented here, include 
solutions of ordinary linear finite difference equations with 
constant coefficients,4,9 ordinary linear homogeneous finite 
difference equations with variable coefficients and initially, 1 
finally, 10 or arbitrarily2 specified boundary conditions, and 
ordinary linear inhomogeneous finite difference equations 

')Work supported in part by the Natural Sciences and Engineering council 
of Canada. 

with variable coefficients and initially, or finally, specified 
boundary conditions. II The above developments 1 ,2, 10 were 
motivated by, and needed for, the analytic solution of the 
SchrOdinger equation1o

,I2 for a quark-antiquark system in­
teracting via a central linear potential. 13 Partial finite differ­
ence equations will be needed in solving the SchrOdinger 
equation for a three-quark system. 14-15 

The method presented here handels ordinary and par­
tial finite difference equations in essentially the same way. 
From the point of view of simultaneous linear equations, the 
only difference between ordinary and partial finite difference 
equations is in the number of indices used to label the varia­
bles, and consequently the number of dimensions needed to 
display the vertices of the corresponding signal flow graph. 
For an ordinary finite difference equation, the signal flow 
graph can be represented by a linear lattice of vertices.2 On 
the other hand, for a partial finite difference equation with 
two variables, a two dimensional lattice ofvertices is needed, 
and so on. The method also treats homogeneous and inho­
mogeneous finite difference equations with the same ease; 
the inhomogeneous term combines with the boundary con­
ditions to form the sources of the signal flow graph. Thus the 
only difference between the two cases is that in the inhomo­
geneous case every vertex has a source, while relatively few 
vertices have sources in the homogeneous case. Finally, the 
method permits an arbitrary specification of boundary con­
ditions provided they are compatible with the equation.2 A 
change in the specification of boundary conditions changes 
the position of the sources in the homogeneous case, and 
their relative strength in the inhomogeneous case. 

In Sec. II we will present a summary of the needed re­
sults on simultaneous linear equations. In Sec. III we will 
study ordinary finite difference equations, and Sec. IV will 
deal with partial finite difference equations. 

II. SIMULTANEOUS LINEAR EQUATIONS 

A system of N simultaneous linear equations can always 
be written in the form 

Xj = L w(i,))x; + w(Sj')) j = 1,2, ... N 
;Er"(J) 

i#-sJ 

(2.1) 
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FIG. I. A typical junction in the signal flow graph corresponding to Eq. 
(2.1). 

and represented8 by the signal flow graph G, as shown in Fig. 
I, where r -I ()) is the set of vertices incident on vertixj, 
w(i,)) is the weight of arc (i,)), and Sj is the source incident on 
vertexj. By definition, a vertexsj is called a source ifthere are 
no vertices incident on it. 

As shown in Ref. 3 it is possible to obtain a topological 
solution of the system of Eq. (2.1) in the form 

Xj = H [P(j)], (2.2) 

where P (j) is the set of all paths, on the signal flow graph, 
from all sources to vertexj. H is the homorphism introduced 
in Ref. 3, and gives the value of a path as the product of the 
weights of its arcs, and the value of a set of paths as the sum 
of the values of its elements, 

H(p) = IT w(i,)), 
(;.j)Ep 

H(p) = IH(p), 
pEp 

H(0) = 0 and HOe}) = I, 

(2.3a) 

(2.3b) 

(2.3c) 

where 0 is the empty set and! e l is a set made up of one 
element of zero length. 

Using the above properties of the homomorphism H we 
can rewrite the solution as 

Xj = IH [P(s,})), (2.4) 
.5ES 

where S is the set of sources and P (s,}) is the set of all paths 
from source S to vertex j. Furthermore since we are consider­
ing that there is a maximum of one source per vertex, and 
that each source is incident on only one vertex, then 
P(s;,}) = {(s;,I)}®P(i,j), where ® istheconcatenationop­
eration,3 and consequently 

Xj = Iw(s;, I)H [P(i,})]. (2.5) 
S,ES 

The fact that the solution is a sum of the contributions of the 
different sources, is a reflection of the linear character of the 
equations. 
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III. ORDINARY FINITE DIFFERENCE EQUATIONS 
A. The Difference Equation 

The ordinary linear inhomogeneous finite difference 
equation can be written as2•4 . 16 

N 

Xm = If.,,(m )xm - a, +I(m), mil (3.la) 
k~1 

and the boundary conditions given by, 

xj" =Aj" juE.!, (3.lb) 

where the coefficientsf." (m), and the inhomogeneous term 
I (m) are arbitrary functions of the level m, and the numbers 
ak are positive or negative intergers belonging to the set A. 

A = {aI' a2' ... , ak} 

and assumed to be ordered according to 

a l <a2 < ... <aN' 

The order h of the equation is given by 

h=aN-al, 

(3.2a) 

(3.2b) 

(3.3) 

and the boundary conditions specify the values of the solu­
tionxm for h different values of the index m. The values ofm 
for which the boundary conditions are specified, will be re­
ferred to as boundaries, and given by the elements of the set 

(3.4) 

Eq. (3.la) should be written in a way which is compatible 
with the boundary conditions. 2 

B. The Signal Flow Graph 

Equations (3.la) and (3.lb) form a set of simultaneous 
linear inhomogeneous equations defining Xm for all integer 
values of m. To draw the corresponding signal flow graphS 
we make the following observations based on Eqs. (3.la, b): 

(i) Every vertex l7 has one and only one source incident 
on it. The intensity of the source is given by 

w(Sm' m) =I(m) mil (3.Sa) 

if the vertex is not a boundary, and by 
w(Sj",ju) =Au jaE.! 

A= {CI,C2} 
01=-1 
~=+2 

t(m-3) (I(m-I) (I(m) t~m+l) 

I I ,', •••• 
sm-3 Sm-I Sm Sm+1 

(3.Sb) 

FIG. 2. A typical section of the signal flow graph corresponding to the 
ordinary finite difference equation x'" =1 t (rn)x", t 

+ 1,2 (rn)x"" 2 + f(rn), which is a special case ofEq. (3.1). Thin circles 
represent ordinary vertices, thick circles represent boundaries, and dark 
discs represent sources. 
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by 

if the vertex is a boundary. 
(ii)The set of vertices incident on a given vertex is given 

r-1(m) = {sm}u{m - ak;akEA} miT 

if the vertex is not a boundary. and by 

r-I(ja) = Vj) ja EJ 

if the vertex is a boundary. 

(3.6a) 

(3.6b) 

(iii)The weight of the arc (m - a. m) eminating from 
vertex (m - a) incident on vertex m. is given by 

f ,<m) 
w(m -a.m) = 0 

fora = akEA 

foraiA. 
(3.7) 

Thus the signal flow graph corresponding to Eqs. (3.1) 
can be represented by two parallel linear lattices as shown in 
Fig. 2. The first lattice contains the ordinary vertices and the 
boundaries. while the second lattice contains the sources. 
The sources have a strength Aa when incident on a bound­
ary. and I (m) when incident on an ordinary vertex. The ver­
tices are divided into two types; ordinary vertices and bound­
aries. The boundaries have no vertices. with the exception of 
a source. incident on them. 

C. The Solution 

Applying Eq. (2.5) to the signal flow graph of Fig. 2. 
and making use ofEqs. (3.5). we obtain the solution of the 
system of equations (3.1) in the form. 

Xm = IAaH [P(ja. m)] + II (I)H [P(i. m)], (3.8) 
~~ ~ 

¥s 

where J is the set of boundaries and S is the set of sources. 
The value of the set of paths from I to m is given. using Eqs. 
(2.3a. b) and (3.7). by 

H [P(/. m)] = I II iy-fir) (3.9) 
pEp (I, m) (fl, Y)Ep 

for all values of I and m. including IE!. provided that 
P(/. m)#0andP(/. m)# {eJ. in which case the value ofP(I. 
m) is given by Eq. (2.3c). 

In addition to giving the solution for x m for all values of 
miT. Eq. (3.8) correctly reproduced the boundary condi­
tions. Letjp be a boundary vertex. then from Eq. (3.8) we 
have. 

Xjll = IAa H [P(ja.jp)] + II(z)H [P(i. m)]. (3.10) 
j,J it(J 

¥s 

But since the only arc incident on a boundary is the one 
eminating from its corresponding source. then there are no 
paths joining a vertex. or a boundary, to another boundary. 
That is 

and 

P(i,jp) =0 for iiJand iiS (3.11a) 

fora#p 

fora =p' 
(3. 11 b) 

where e is an arc of zero lengthjoiningjp to itself. From Eq. 
(2.3c) we then have 
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H [P(i.jp)] = 0 and H [P(ja,jp)] = Dap 

and Eq. (3.10) reduces to 
h 

Xj{J= IAaDap=Ap. 
a=l 

(3.11c) 

(3.12) 

The value of the set of paths from I to m is what has 
previously been referred to as a combinatorics function.2 

C(/, m) = H[P(I. m)]. (3.13) 

Thus in terms of combinatorics functions, Eq. (3.8) can be 
written as 

h 

Xm = I AaC(ja. m) + IJ(I)C(i. m). (3.14) 
a= 1 it(J 

it(s 

D. The Boundary Conditions 

Equation (3.10) corresponds to the case where the 
boundary conditions are arbitrarily specified at h different 
values of xm • On the other hand when the boundary condi­
tions are given as initial conditions 

Xjo-i=Ajo-i' i=0,1.2 ..... h-l (3.15a) 

then. as shown in Ref. 2. all the elements of the set A must be 
positive. 16 and consequently 

P(i.m)=0 fori>m. 

Furthermore in this case aN = h. and hence no segment can 
by pass the h successive boundaries. That is. there are no 
paths joining points above and below the boundaries 

P(i.m)=0 fori<Jo -h and m>jo' 

Hence in this special case Eq. (3.14) reduces to 
h -1 m 

Xm = LAjo-iC(jo -i.m)+ L J(I)C(i.m) 
;=0 i=jn+1 

form>jo' (3.15b) 

Note that. in this case and due to Eq. (2.3c). C(m. m) 
= H[P(m. m)] = H({ eJ) = 1. Similarly if the boundary 

conditions are given as final conditions 

(3.16a) 

then the elements of the set A must all be negative. and the 
boundary conditions decouple vertices on both sides of them 
leading to the solution 

h-I ~-I 

Xm = LAjo+iC(jO +i.m)+ L1(z)C(i.m) for 
;=0 ;=m 

m<Jo. (3. 16b) 

IV. PARTIAL FINITE DIFFERENCE EQUATIONS 
A. The Difference Equation 

The partial linear inhomogenous finite difference equa­
tion of a function of n variables can be written in the form. 

x(m) = Iia, (m)x(m - ak ) + I (m) miT 
a,EA 

and the boundary conditions specified by 

x(ja) = A (L) jaE!. 

where 
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and 

m = (ml' m2' ... , mn), 

ak = (a k I' ak2 , ••• , akn ), 

A = {aI' 82, ... , aN j, 

J = {j1,j2' ... , ... j, 
x(m)==x(m l , m2, ... , mn)==Xm,m, ... m", 

I(m)_I(ml' m2' ... , mn), 

(4.2a) 

(4.2b) 

(4.3a) 

(4.3b) 
(4.4a) 

(4.4b) 

(4.5) 

The order of the equation is given by the vector h, 

h = (h .. h2' ... , hn ), 

where 

and 

max I } aj = maxl.0Jj, a2i1 ••• , aNi 

(4.6a) 

(4.6b) 

(4.6c) 

(4.6d) 

The compatibility of the boundary conditions with Eq. 
(4.1a), and their relation to the order h, will be discussed in 
Sec. 4. 

B. The Signal Flow Graph 

Equations (4.1a) and (4.1b) form a set of simultaneous 
linear inhomogeneous equations defining x(m) for all integer 
values of(ml' m2, ••• , mn ). The corresponding signal flow 
graph consists of two regular n-dimensional lattices that are 
displaced, one with respect to the other, as shown in Fig. 3. 
The first lattice contains the ordinary vertices and bound­
aries, while the second lattice contains the sources. For every 
n-dimensional vector m with integer components there is a 

FIG. 3. A typical section of the signal flow graph corresponding to the 
partial finite difference equation 

x(m,. m2 ) = f..o(m,. m2)x(m, -1. m,) + 10. -2 (m,. m2) 

xx(m,. m 2 +2) +/ 1.+1 (m" m2 )x(m, + 1. m 2 -1) 

+I(m,. m2). 

Only arcs into. and out of, vertex (m,. m2) have been indicated. Thin circles, 
thick circles and darkend discs represent. ordinary vertices. boundaries. 
and sources respectively. 
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vertex on the first lattice and a corresponding source on the 
second lattice. It is convenient to introduce the following 
notation for the vertices of the signal flow graph: 

V = {Va' V p' ... } is the set of all vertices, 

S = {Sa, Sp, ... } is the set of all sources, 

J = U", jp, ... } is the set of all boundaries, 

M = {ma , mp , ..• } is the set of ordinary vertices. 

Thus 

V=MuJuS. (4.7) 

The sources have a strength of I (m) when incident on an 
ordinary vertex m, as a strength of A. 0,,) when incident on a 
boundary vertex ja' That is 

w[s(m), m] = I (m), meM 

w[s(ja),j,,] =A. Oa)' jaEJ. 

The set of vertices incident on a vertex m is given by 

(4.8a) 

(4.8b) 

r-I(m) = {s(m)}u{m - ak; akeA}, meM (4.9a) 

and that incident on a boundary is given by 

r-IO a ) = {sOn)}, LEJ. (4.9b) 

Finally, the weight of an arc incident on an ordinary vertex 
meM is given by, 

Jf..(m) 
w(m - a, m) = 1 0 

c. The Solution 

for a = akeA }. 

for aiA 
(4.10) 

Applying Eq. (2.5) to the signal flow graph correspond­
ing to Eqs. (4. la, b) and making use ofEqs. (4.8) we obtain 
the solution of Eqs. (4.1) in the form 

x(m) = LA. Oa)H [POn, m)] + L1(i)H [P(i, m»), 
JaE.! lEAl 

(4.11) 

where P (1, m) is the set of all paths, on the signal flow graph, 
which join vertex 1 to vertex m. Its value is given by 

H [P{l, m») = L IT fy-p(Y) (4.12) 
peP(I. m) (P. y)Ep 

for all values ofl and m on the first lattice, provided that 
P(l, m)#0 and P{l, m)# {el, in which case the value of 
P(l, m) is given Eq. (2.3c). 

As in the case of ordinary finite difference equations, 
the solution (4.11) correctly reproduces the boundary condi­
tions. Let jp be a boundary vertex, then 

Due to Eq. (4.9b) we have, 

P (i, jp) = 0 for ieM 

and 

for a.:/=p 
fora =p' 

Adel F. Antippa and Nguyen Ky Toan 
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Consequently 

H [P(i, jp)] = ° and H [P(ja' jp)] = oaP. (4.15) 

Substituting the above values in (4.13) we obtain 

(4.16) 

The combinatorics function over an n-dimensionallat­
tice is defined by 

C(I, m) =H[P(I, m)] (4.17) 

and Eq. (4.13) can be rewritten as 

x(m) = IA (ja)C(ja' m) + II(i)C(i, m). 
LEJ IEM 

(4.18) 

D.The Boundary Conditions 

The boundary conditions, for a partial finite difference 
equation of a function of n variables, are traditionally stated 
in the form of h equations 

Xm1m! .. m, ... m" 

= Aim,(m., m 2, ... , m i_ l , m i+ l , ... , mn)i = 1,2, ... , n 

and 

m i = 0, 1, ... , hi - 1, (4.19) 

where h = (hi' h2' ... , hn ) is the order vector of the equation, 
and 

(4.20) 

For an ordinary finite difference equation, the value of n is 1 
and hence the A are constants. 

The above specification has several shortcomings: First 
it is restrictive, giving the boundary conditions as initial con­
ditions. Second there is overlap in the specification; that is, 
certain values of Xm are specified by several different func­
tions, and it is important to insure that the different specifi­
cations give the same value for Xm • Finally, when some levels 
are missing in the difference equation, the above set of equa­
tions overspecifies the boundary conditions leading either to 
redundancy or inconsistancy. 

The first shortcoming can be overcome by replacing the 
range of m i in Eq. (4.19) by 

(4.21) 

This provides a certain liberty in specifying the boundary 
conditions, but still requires that they be specified along 
straight lines of vertices parallel to the axes of the signal flow 
graph lattice. On the other hand the solution (4.11) is valid 
for an arbitrary specification of boundary conditions. Thus 
we specify the boundary conditions by the values of xm over 
a certain domain) of values ofm as in Eq. (4.1b). This, at the 
same time, avoids the problem of over specification and 
incoherence. 

We still need to formulate the problem of compatibility2 

of the equation with the boundary conditions. To this end we 
use r - n(m), the set of the nth order antecedents (ancestors) 
of vertex m. The first-order antecedents of vertex m are the 
vertices incident on m, and are given by the elements of the 
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set r -I (m). The second-order antecedents ofm are the ver­
tices incident on the element of r -I (m), and so on. Thus 

r -n(m) = u r -I (k). 
kEr (II 1) (m) 

(4.22) 

Since a source s has no vertices incident on it then 

r -n(s) = 0 n = 1,2,.... (4.23) 

Consider a vertex m on the signal flow graph, and let us 
trace backwards the paths incident on it. After n steps back­
wards we reach the nth order antecedents ofm. The elements 
of r - n(m) that are sources will not generate any elements in 
r - (n + I)(m), while elements that are not sources will. Com­
patibility requires that all paths incident on m~ and made up 
of vectors 8 k EA, should eminate from sources. Hence the 
condition of compatibility can be stated as, 

r - "'(m) = 0 mEM. (4.24) 

v. CONCLUSION 

The solution of partial finite difference equations on n 
variables has been obtained as the value of a set of paths on 
an n-dimensional lattice. The paths are constructed from a 
set of vectors determined by the level differences of the equa­
tion, and the value of an arc is the corresponding coefficient. 
The value of a path is the product of the values ofits arcs, and 
the value of a set of paths is the sum of the values of its 
elements. 

The solution is in principle as easy to obtain for homo­
geneous as for inhomogeneous equations, for ordinary as for 
partial difference equations, and for initial as for arbitrary 
boundary conditions. The method is general, intuitive, and 
simple to apply. The solution and its derivation are fully 
topological and totally independent of Cramer's rule. 

By expanding the solution of a partial differential equa­
tion in a multi variable power series, the differential equation 
can be transformed into a partial difference equation for the 
expansion coefficients. Thus the solution presented here will 
provide power series solutions of partial differential 
equations. 
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Finite nonabelian subgroups of SU{n) with analytic expressions for the 
irreducible representations and the Clebsch-Gordan coefficients a) 
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We present two sequences of finite nonabelian groups which are semidirect products of three Zn 
groups. Although these groups are not simply reducible (in the tensor product of two irreducible 
representations an irreducible representation is obtained more than once) we give analytic 
expressions for the irreducible representations and the Clebsch-Gordan coefficients. 

\. INTRODUCTION 

As opposed to continuous Lie groups, finite nonabelian 
groups have found up to now only a few applications in parti­
cle physics. As a result the best known groups in the trade are 
either the point groups [finite subgroups of SO(3)] or the 
permutation groups. I In the last few years, however, finite 
groups have found two new fields of applications: (a) when 
combined with local gauge invariance they are used as a sym­
metry of the flavor sector of unified theories of weak and 
electromagnetic interactions, 2 (b) in statistical mechanics 
they are considered in generalized Ising models. 3

,4 

One would thus like to have in our hand a larger num­
ber of groups and try to use them in physical applications, 
Unfortunately a classification theory for finite groups does 
not exist and one has to find supplementary criteria in order 
to know how to look for them. In this paper we define two 
sequences of non-Abelian groups of order n3 (n = 2,3, ... ) 
that we call !iJ (n) and Q(n) [!iJ (2) is isomorphic to the 
dihedral group D4 and Q (2) is isomorphic to the quater­
nionic group], and which have some remarkable properties. 
The Q (n) groups are subgroups ofSU (n)5 and this might 
make them suitable to be used as an approximation for an 
SU (n) theory on a lattice. On the other hand, all the charac­
teristics of the !iJ (n) and Q (n) groups can be written in an 
analytic way. This includes the irreducible representations 
(IR) and the Clebsch-Gordon (CG) coefficients as is the 
case of SU (2). In this way all calculations are simplified 
enormously and one does not have to deal, as is usually the 
case, with multiplication tables which define the group and 
other tables for the CG coefficients. 

As a first application6 spin systems defined on the 
groups!iJ (n) have been considered and the selfduality con­
ditions have been worked out. This was possible since analyt­
ic expressions for the characters of the I.R. of!iJ (n) were 
available. 

From a mathematical point of view we find one result 
very interesting: When taking tensor products of two irredu­
cible representations one obtains the same representation 
several times (our groups are not simply reducible). In spite 
of that, one is able to define in an analytical wayan orthonor­
mal basis for the "degenerate" states and in this way to deter­
mine the Clebsch-Gordan coefficients. We remind the read-

"'This work came out of a seminar for undergraduate students on finite 
groups and their applications. 

er that this problem made it impossible, up to now, to find 
analytic expressions for the C-G coefficients ofSU (3). 

As a side point we define the q (n)-algebras. Those are 
related to the Q (n) groups in the same way the quaternionic 
algebra q (2) is related to the quaternionic group Q (2). The 
q (n) algebras are relevant for the formulation of the Zn 
Potts models in statistical mechanics.7 

This paper is organized as follows. In Sec. 2 the nonabe­
lian groups of order n3!iJ (n) and Q (n) are defined. One 
shows which of the groups!iJ (n) and Q (n) are shown to be 
solvable and to factorize in their Sylow subgroups. 

In Sec. 3 we give the analytic expressions for the irredu­
cible representations of the groups!iJ (n) and Q (n). The 
characters of the groups !iJ (n) and Q (n) (same n) are the 
same. The Clebsch-Gordan series are given in Sec. 4 and the 
Clebsch-Gordan coefficients in Sec. S. Our conclusions and 
the definition of the q (n) algebras are presented in Sec. 6. 

2. THE !iJ (n) AND Q (n) GROUPS 

The elements of the group!iJ (n) are labelled by g~,f3' 
where a,/3,y = O,I, ... ,n - 1. Thus the group is of order n3 

and the multiplication rule is 
Y gY' _ y+y+aj3' 

ga,f3 u',f3' - ga + a',f3 + 13' , (2.1) 

where a,/3,yEZn and all operations in Eq. (2.1) and hereafter 
are made modulo n. From the definition (2.1) one sees that 
!iJ (n) has an Abelian Zn ® Zn subgroup given by the ele­
ments g~,o. One can easily see that the !iJ (n) groups are 
solvable. (A group G is solvable if the sequence G (I) of the 
derived groups G = G (0) ;2 G ( 1 ) ... ;2 G (k ) ends after a finite 
number of steps: G (k) = e where e is the unit element. The 
group G (i + I) is obtained from the commutators of the ele­
ments of G (I).) In order to show this we compute the commu­
tator of two elements g~,f3 and gr',f3" use Eq. (2.1): 

(g~,f3) -I (g~",f3' ) -I g~,f3g~",f3' 

= g = Y +-"f3g - 1", + Q'f3'gY gY', , 
a, /3 - a , /3 a,f3 a ,/3 (2.2) 

= gg~' - 0'13 , 

and keep in mind that the subgroup gi;,o is abelian. 
One can also show that the!iJ (n) groups are nilpotent. 8 

(A group G is nilpotent if in the sequence of the derived 
groups G = G (o);2G (I );2 .. ·;2G(k) = e, GU-I)/G(l) is in the 
center of G /G (I) for i = l, ... ,k.). 
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As an example let us consider the ~ (2) group and its 
faithful two-dimensional representation: 

g6.o = ( - 1 V( ~ ~) = ( - 1 VI; 

gr,o = ( - 1 V( ~ _ ~ ) = ( - IV 0' 3 

(2.3) 

g6.1 = ( - IV( ~ ~) = ( - IVO'I; 

gL = (-lV( ~ - ~ ) = - (-lViO'z, 

where Y = 0,1 and 0'1' O'z, 0'3 are the Pauli matrices. From 
Eq. (2.3) one observes that the group ~ (2) coincides with 
the dihedral group D4 which is a subgroup of SO (3). I 

We now define the Q (n) groups through the multiplica­
tion rule 

gy gY _ gY + Y + ap' + aa' + PP' a./3 a'./3' - a+a';/3+/3' , (2.4) 

where again a,/3,yEZn and all operations are made modulo 
n. One can show that the Q (n) groups are solvable and 
nilpotent. 

We consider two examples. First the group Q (2) and its 
faithful 2-dimensional representation: 

g6.o = ( - lVl; gr,o = ( - IVi0'3 , (2.5) 

gi;.t = (-IViO't; gr.l = ( - lYiO'z , 

where y = 0,1 and 0'1' O'z, 0'3 are the Puali matrices. This 
group coincides with the quatemionic group which is a sub­
group ofSU (2) lthe matrices (2.5) are unitary and their de­
terminant is one]. 

The Q (3) group has two faithful three-dimensional re­
presentations, we 'consider one of them 

_bo ~@,U : n -t, ~@,U ~ ~,) 
o 
o 

(2.6) 

where y = 0,1,2 and (j) = eZrr
i/3. These matrices are unitary 

and their determinant is one thus Q (3) is a finite subgroup of 
SU (3). The second 3-dimensional faithful representation of 
Q (3) is the complex conjugate representation of (2.6). 

For finite groups an essential role is played by the order 
of the group. We remind the reader that if a group G of order 
N has a subgroup H of order M then M is a divisor of N. The 
converse is not true (if M is a divisor of N one does not always 
have a subgroup of order M). If we write however 

(2.7) 

where PI'PZ'''''p, are prime numbers, then the group G has 
the subgroups H1,Hz,· .. ,H, of order P~',P~', ... ,p~'. The sub­
groups H I>Hz, .. ·,H, are called the Sylow subgroups. 8 

Nilpotent groups have the important property that they 
factorize into their Sylow subgroups8 (the same property 
holds of course for Abelian groups). Thus if we write 
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(2.7') 

we have 

(2.8) 

Q(n) = Q(P~') ® Q(Pi) ® ... ® Q(P~) . 

As an illustration we derive the factorization property 
for the ~ (n) groups. Let us assume that 

n = k-l, (2.9) 

where 

<P(k,l) = 1 . (2.10) 

The symbol <P (k,l) in (2. 10) and hereafter denotes the largest 
common divisor of k and I. Any group element g~./3E~ (n) 
can he written as 

(2.11) 

whereak,fJkoYkEZk,al,/3I'YIEZI and the operations in (2.11) 
are done in Zn (modulo n). 

We now can write the group elementsg~./3 as the prod­
uct of two commuting elements of ~ (n) 

y _ /2yl. k 2YI 
ga./3 - gla,,l/3,gka,.k/3, 

_ klYI /"ly/. 
- gka"k{3,gla,,lP, . (2.12) 

Note that the elementsg:~~.'IP' form a subgroup of ~ (n) 

(2.13) 

The operations in Eq. (2.13) are done in Zn but Eq. (2.13) 
remains unchanged if we take I = 1 and do the operations in 
Zk thus 

~(n) = fi/(k) ® ~(/). 
Because ofthe factorization property (2.8) the study of 

the groups fi/ (n) and Q (n) can be reduced to the case 
n = pS, where p is a prime number. One can show that the 
group ~ (PJ and Q( PJ are isomorphic for p odd. In order to 
find their relation to other known groups, we give here the 
known definitions of the generalized dihedral and quater­
nion groups. 8 

Generalized dihedral group D(o) is a group of order 2.) 
obtained from two generators a and b satisfying the relations 

a2' '=1; bZ=l; ba=a-1b (s>3). (2.14) 

Generalized quaternion group C(o) is a group of order 2" 

with the generators a and b satisfying the relations 

(2.15) 

We notice that 0(3)-04 , One can show only the following 
isomorphisms 

fi/(2) = 0(3); Q(2) = C(3) . (2.16) 

Thus the ~ (n) and Q (n) groups generalize the 0(3) and 
C(3) groups on a different line than (2.14) and (2.15). 

Before concluding this section we would like to make a 
comment about the Lie groups which have the finite groups 
Q (n) and ~ (n) as subgroups. 

From the explicit expression of the irreducible repre­
sentation which will be given in the next section one can see 
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that the Q (n) groups have an n X n irreducible unitary repre­
sentation with determinant one, they are thus subgroups of 
SU (n). With the exception of .@'(2), which is a subgroup of 
SO(3), we do not know which simple Lie groups have .@' (2~) 
as subgroups. 

3. THE IRREDUCIBLE REPRESENTATIONS OF THE 
GROUPS 9 (n) AND Q(n) 

We have obtained the expression for the IR of some 
groups.@' (n) and Q (n) by direct calculation and then we 
have guessed the general result. It was then an easy task to 
check that the IR were unitary and that we have obtained all 
of them. 

The irreducible representations are labelled by the tri­
ple [i,j;k], where keZn and 

O<}, j<;.k - 1 , (3.1) 

where 

k = eP(k,n), (3.2) 

[eP (k,n) is the largest common divisor of k and nJ. The di­
mension of the IR [i, j;k ] is 

Dim([i,j;k]) = n/k. (3.3) 

The expression of the [i,j;k ] irreducible representation of the 
group.@' (n) is: 

T[i.j;kJ(gY ) _ ~ (t)k(y+ab)+ia+jp 
a.b a,p -Oka.k(b+p) , 

where a and b are the indices of the matrix 

a,b = O,I, ... ,(n/k)-1 

(3.4) 

(3.5) 

and (t) = e21Ti
/

n
• In Eq. (3.4) all operations are done modulo n. 

Although we should be interested only in the case n = p' [see 
Eq. (2.8)] the expression (3.4) gives automatically the result 
for any n. For example for the group 

.@'(6) = .@'(2) ® .@'(3) , (3.6) 

we can label the irreducible representation either by [i,j;k 1 
(i,j,keZ6) or by the pair ([i2,j2;k2],(i3,j3;k3]), where 
i2,j2,k2eZ2 and i3,j3,k3eZ3. 

It is interesting to compare the expression of the irredu­
cible representations [i,j;k] of.@' (n) [see Eq. (3.4)] with the 
expressions of the one-dimensional irreducible representa­
tions (i,j,k) of the Abelian group Zn ® Zn ® Zn where the 
group elements h ~.P verify the multiplication rule 

h
y hr' -hY+r' 
a.p a',p' - a + a',p + P' , (3,7) 

and the irreducible representations are 

(3.8) 

where i,j,k,a,p,yeZn' We now compute from Eq. (3.4) the 
expression of the character of the IR [i, j;k ]: 

_ n /j /j (t)ia + jp + ky - k ka,O kP,O • (3.9) 

We now notice the identity which relates the expressions 
(3.9) and (3.8) 
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X[ij;kJ(g~,p) = ~ nf T(pk+i.qk+j.k)(h~,p). (3.10) 
nk p.q=O 

Thus the characters of the IR of the non-Abelian group 
.@' (n) can be expended in terms of the characters of the 
irreducible representations of the Abelian group 
Zn ® Zn ® Zn. This identity plays a crucial role when one is 
looking for duality transformations for spin systems defined 
on the groups 9 (n).6 

We now give the expression of the IR for the groups 
Q (n). From the factorization theorem given by the Eq. (2.8) 
and the isomorphism 

Q(pj = .@'(pj (3.11) 

for p prime, p"# 2 we can limit ourselves to the case n = 2' 
only. We have 

T[iJ;kJ(gY )-6 (t)kly+ab-(a'+P')/2J+ia+ jP (312) 
a,b a,p - ka.k(b + P) • • 

[lnEq. (3. 12) one first computes k [r + ab - (a2 + p 2)/2] in 
Z and then computes the other operations in Zn (modulo n ).] 

For the case n = p'(p =I 2) the representations (3.12) 
can still be used and they are equivalent to those given by Eq. 
(3.4). The characters for the IR of the Q (2j group obtained 
from Eq. (3.12) are 

X
liJ;kJ(gY )= ~6 /j {t)kly-(a'+P')/2J+ia+ jP 

a.p k ka.O kP.o 

= ~ /j 6 {t)ia + jp + ky k ka.O kP.o • (3.13) 

Thus the characters of the.@' (2j and Q(2j groups coincide. 
This property could already been noticed from the represen­
tations [0,0;1] of the groups .@'(2) and Q(2) given by Eqs. 
(2.3) and (2.5). 

Let us now consider a few examples. If n is a prime 
number p the structure of the IR [i,j;k] simplifies very much. 
For.@' (p) there are only two possibilities: 

(1) k = O. In this case k = eP (O,p) = p, and we havep2 
one-dimensional representations [i,j;O] (i,jEZp) with 
[i,j;k]* = [p - i,p - j;O]. 

(2)k =10. In this casek = eP(k,p) = 1 thusi =j = Oand 
all the representations [O,O;k] (k = 1,2, ... ,p -1) are p-di­
mensional. We also have [O,O;k]* = [0,0;p - k]. 
Thus for.@' (2) and Q(2) one has 4 one-dimensional represen­
tation and one two-dimensional real representation. For 
Q(3) one has 9 one-dimensional representations and two 
three-dimensional representations, etc. 

4. CLEBSCH-GORDAN SERIES 

Although the expression of the CG coefficients will be 
given in the next section, we prefer to present separately the 
Clebsch-Gordan series. The series are the same for the Q (n) 
and.@' (n) groups. Let us take the tensor product of two 
irreducible representations (il,jl;k1l and [i2,j2;k2J of.@' (n) 
and find into which irreducible representations [i,j;k ] it 
decomposes. 

A few notations are useful. We denote 

fl = eP(kl,n); f2 = cP(k2,n); k = cP(k,n) 

(4.1) 
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where <P (a,b ) is the largest common divisor of a and band 
t/J(a,b,c) is the least common multiplier of a, b, and c. [Notice 
that for k = k, + k2, <P(~,k) = <P(k2,k).] 

The Clebsch-Gordan series read 

[i I,j ,;kl ][i2,j2;k2] 

= Gl [il + i2 - KU,jl + j2 - Kv;k]1] , 
U,V,71 

where 

k = kl + k2 

O';;;il + i2 - Ku.;;;k - I 

O<JI + j2 - Kv.;;;k - I , 

0';;;1]';;;nI8 - 1 . 

(4.2) 

(4.3) 

The index 1] was introduced in order to distinguish be­
tween the various equivalent representations (same [i,j;k]) 
obtained in the tensor product. The multiplicity of the repre­
sentation [i,j;k] in the product [i"jl;k,] ® [i2,j2;k2] is of 
course: 

N([i,j;k]) = nl8 . (4.4) 

Let us give a few examples. First the case Q(2). We have 

[i1,jl;O] ® [i2,j2;0] = [il + i2,jl + j2;0] , 

(i"i2,jl,j2EZ2) ; 

[il,j,;O] ® [0,0;1] = [0,0;1], 

(i l ,j,EZ2) , 

[0,0;1] ® [0,0;1] = ® [u,v;O]. 
u.u=o 

(4.5) 

Keeping in mind that the representations [i,j;O] 
(i,jEZ2) are one-dimensional and that the representation 
[0,0;1] is the two-dimensional one, the multiplication rule 
(4.5) reads off easily from an SU(2) point of view with the 
interpretation that the spinor representation remains two­
dimensional for the Q(2) subgroup but that the vector repre­
sentation splits into three nonequivalent one-dimensional 
representations. 

A similar situation occurs for Q(3) [subgroup ofSU(3)]. 
The 3 and 3* representations ofSU(3) remain irreducible 
under Q(3) (those are the representations [0,0;1] and 
[0,0;2]). The representation 6 decomposes under Q(3) into 
two representations 3* and the octet representation decom­
poses into 8 one-dimensional representations (these are the 
representations [i,j;O], i,jEZ3 with the exception of [0,0;0], 
which is the scalar representation). We have, for example, 

[0,0; 1] ® [0,0; 1] = [0,0;2]0 Gl [0,0;2]1 Gl [0,0;2]2 • (4.6) 

which reads 

3 ® 3 = 3* Gl3* Gl3* . (4.6 /) 

As seen above the g; (n) and Q (n) groups are not simply 
reducible. This makes the problem of the determination of 
the Clebsch-Gordan coefficients a very interesting one 
since, up to now, (to our knowledge) there is no example in 
which this problem has been solved in an analytic way. 

2484 J. Math. Phys., Vol. 21, No.1 0, October 1980 

5. THE CLEBSCH-GORDAN COEFFICIENTS 

We first give the expression of the CG coefficients [they 
are identical for the g; (n) and Q (n) groups] and afterwards 
sketch the derivation. With the notation used in Sec. 4 we 
have 

C [~I -+:- ;2 - KU'!I +: i;. - Kv;k 1./ ,a 
[' • .Jl;k.i. a.;[lz.h;k2J. a z 

(5.1) 

here ai' a2 and a denote the states corresponding to the re­
presentation [il,jl;k l ], [i2,j2;k2], and [i,j;k], where 
(i = i , + i2 - KU,j =jl + j2 - KV). We have 

O.;;;al.;;;(nlkl ) -1; 0.;;;a2.;;;(nlkz) -1; 

O.;;;a.;;;(nlk) - 1 , (5.2) 

where 

k = kl + k2 . (5.3) 
The index 1] distinguishes between equivalent represen­

tations. In the right-hand side of the Eq. (5.1) we have 

T = t/J(k"k) , (5.4) 

where ¢ (a,b ) is the least common multiplier of a and b. The 
connection between 5 and 1] is a more complicated one: 

(5.5) 

The value 50 is the smallest solution of the equation 

k l5 + kzt = i - i , - i2 = KU . (5.6) 

Here ;EZn is arbitrary. We remind the reader that all oper­
ations are made modulo n. Finally the positive integers I and 
11 in Eq. (5.1) are defined by the equation 

<P(k"k) = 1/" + Ik. (5.7) 

For n = pS (p is a prime number), II and I are 0 or 1 (for 
k, = k, we take by convention 11 = I =~. 

Before going into the derivation ofEq. (5.1) let us con­
sider again the example of the groups g; (p) where p is a 
prime number. In this case (see Secs. 3 and 4) there are four 
cases. 

(1) k, =10, k2=10, k = k, + k2=10. In this case 

k, = k2 = k = K = 8 = T = ",(kl ,k2) = 1 , 

i I = i2 = i = j I = j2 = j = 50 = 0 , 

5=1] 

and we get 

C [O,O.;k I",a .' = 8 8 8 (58) 
[O.O.k, l,a,,[O,O,k, I.a, k, + k"k 1],a, - a k,a, + k,a"ka , • 

where 

0.;;;a l ,a2,a,1]';;;p -1 . 

(2) k] =f0, k2 =f0, k = k, + k2 = O. We have 

k. = k2 = K = I. = 1; {) = k = T = p; 5 = 1] = 1=0 

and hence 

CliJ;OJ = _1_8 .(j)-Ja, 
IO,O;k, l,a,;IO,O;~ ',a, \1'; k,a, + k,a,,1 

(5.9) 

(3) k, =f0, k2 = 0, k =10, Now we have 

k. = k = K = T = I; k2 = 8 = p; 5 = 1] = 0 
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and 

C [O.O;k, I.a .. = t> . • 
[O.O;k, l.a';[',J,.O I k,(a, - a). -', (5.10) 

(4) kl = 0, k2 = 0, k = O. In this case 

kl = k2 = k = t> = K = 7 = P; S = 1] = 0 

C [[iJ;OIOI [ .. 0 I = t> .t>. ". (5.11) 
'.JI; • '2J2; '. + '2,1 J. +hJ 

We now give the derivation ofEq. (5.1) in the case of the 
g; (n) groups [as mentioned before the results are identical 
for the Q (n) groups]. We first write the expression of the 
irreducible representation [i,j;k] [see Eq. (3.4)] in an equiv­
alent form 

TliJ;kl(gY)e _wk(y+ab)+ia+jfJe (5.12) 
a.fJ kb - k(b+fJ) 

here eo, ek.! , ... , ek(nlk -I) are the basis vectors. 
We are interested in the tensor product of the represen­

tation [il,jl;k l] and [i2,j2;k2] and we start in the standard 
way I by constructing the vectors 

P (e ®e ) - _1_ " [T[iJ;k I(gY )]* 
c k.b. k 2b 2 - 2k- ~ c,o a,/3 

n a.fJ.y 

(5.13) 
X T[i,J,;k,I(gY)e ® Tli,J,;k,I(gY)e • 

a,f3 k .b. a./3 k 2,b2 

Using Eqs. (3.4) and (5.12), we can write Eq. (5.13) in the 
following form: 

1 
Pc(ek,b, ® ek,b) = 2k- L t>kc.kfJ 

n a.fJ.y 

X wk,(y + ab,) + k,(y + ab,) - ky + a(i, + i, -I) + fJ(j, + j, -)) 

(5.14) 

Xek,(b, +fJ) ®ek,(b, +fJ) • 

We perform the summations over a and r and obtain 

PJek,b, ® ek,b) = (lIk)t>k, + k,.kt>k,b, + k,b,.i- i, _ i,F, (5.15) 

where 

F = L t> kc.kfJW(j, + j, - ))fJek,(b, + fJ) ® ek,(b, + fJ) 
fJ 

L t>kc.kfJW(j, + j, - ))fJt>k,(b, + fJ).k,a, 
/3,G.,a]. 

X t>k,(b, + fJ),k,a, ek,a, ® ek,a, 

X " ~ ~ (j, + j. - ))fJ 
~ Ukc,kfJUk,(a, - b,),k,fJW - , 
fJ 

(5,16) 

The last identity makes use of the assumption that the t> 's in 
Eq, (5,15) don't vanish, 

One is now able to do the summation over /3 

" t> t> w(j, + j, -;)fJ 
~ kc,kfJ k,(a, - b,),k,fJ 
fJ 

= t> " {) - - w(j, +j, -;)fJ 
T(u. - hi - c),D ~ Ike + l.k.(a. - b.),K/3 

fJ 

- Kt> {) WE[lkc + I,k,(a, - b,)1 (5 17) 
- j,+j,-j,EK T(a,-b,-c),O " 

where the definitions of K, 7, I, and II are given by the Eqs. 
(4.1), (5.4), and (5.7). We now use the Eqs. (5.15)-(5,17) and 
obtain 
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Xt>j, + j, _ j.EK L t>k,a, + k,a, - kc.i - i, - i,t>T(a, - b, - c),O 

(5.18) 

Ifwe take c = 0 in Eq, (5.18) we get 

K 
P(ekb®ekb)=-t>k kkt>·· o 11 '1 '1 f'+ 2' j.+h-j.EK 

X L t>k,(b, - a,) + k,(b, - a,),O ·t>k,a, + k,a,.i - i, - i, . 

X t> WEi,k,(a, - b,) 
T(a, - b,).O 

Xek,a, ®ek,a, • (5.19) 

Making various choices for b l and b2 one may obtain vectors 
which are proportional to one another. The following vec­
tors however are either orthogonal or zero: 

Rs,o = V Klk t>k, + k"kt>j, + j, -j,EK 

X "t>k {j . . - . t>... _ ~) 0 • ~ .a. + /..,,,,.1 - II '1 I\G. ~. 

where the index S takes values within the interval 

O<s«nh) -1. 

(5.20) 

(5.21) 

There is a simple algorithm which gives the nonzero vectors 
Rs.o . One writes S in the following form 

S = So + 1][J/r(kl ,lS)lkJ , (5,22) 

where 

(5.23) 

and So is the smallest positive integer which is a solution of 
the equation 

kls + k£ = i - i l - i2 . (5.24) 

{; is an arbitrary number in Zn. From the knowledge of the 
vector R g•o. we can compute all the other basis vectors of the 
representation [i,j;k]1/ using Eqs. (5.18) and (5.20). [1] la­
bels the various equivalent representations and is related to S 
through Eq. (5.22)]: 

(5.25) 

6. CONCLUSIONS 

We have shown that in the case of the g; (n) and Q (n) 
groups one is able to find analytic expressions which give in 
one formula all the irreducible representations of all the 
groups (any n). The formula for the Clebsch-Gordan coeffi­
cients is again valid for all the irreducible representations of 
all the groups. A key point is that although the groups are 
not simply reducible one is able to find a label for the equiv­
alent irreducible representation obtained in tensor products. 
This label [1] in Eqs. (4.2) and (4.3)] is also inZn • We conjec­
ture that similar results are obtainable for other sequences of 
solvable non-Abelian groups. 

Since the quatemionic group Q(2) is related to the qua­
temionic algebra q(2), one may ask which are the algebras 
associated to the Q (n) groups. 
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Notice from Eq. (2.5) that the quaternions can be la­
beled in a (Z2,Z2) way 

(7(0,0) = 1; (7(1,0) = i(73; (7(0.1) = i(7l; (7(1,1) = i(72 (6.1) 

and that the associative algebra of the (7(a,f3) matrices can be 
written 

(6.2) 

where a, p, a', p , eZ2 and (J) = e21ri/2. These algebras are sim­
ple and their n-dimensional representation can immediately 
be obtained from the [0,0;1] representation of the Q (n) 
groups. For example, the representation for the (7(a,{3) matri­
ces in the Q(3) case are the matrices given by Eq. (2.6) in 
which we drop the factor {J)r. The properties of the q (n) 
algebras will be presented elsewhere. It is important to notice 
that for the Z n Potts models used in statistical mechanics the 

2486 J. Math. Phys., Vol. 21, No.1 0, October 1980 

(7(1,0) and (7(0,1) matrices of q (n) play in the transfer matrix 
the same role as the (73 and (71 matrices for the Ising model. 7 

1M. Hamermesh, Group Theory and its Applications to Physical Problems 
(Adison-Wesley, Reading, Mass., 1964). 

2See, e.g., D. Wyler, Phys. Rev. D 19, 3369 (1979), and references quoted 
therein. 

3J. Bellissard, J. Math Phys. 20,1490(1979); A. B. Zamolodchikov and M. 
I. Monastyrskii, Sov. Phys. JETP SO, 167 (1979); J. M. Droulfe, Itzykson 
and J. B. Zuber, Nucl. Phys. B 147, 132 (1979). 

4For a review see R. Savit, Rev. Mod. Phys. 52, 453 (1980). 
'For the finite subgroups ofSU(3), see W. M. Fairbairn, T. Fulton and W. 
H. Klink, J. Math. Phys. 5, 1038 (1964). 

6R. Casalbuoni, V. Rittenberg, and S. Yankie1owicz, Nucl. Phys. B (to be 
published). 

7M. J. Stephen and L. Mittag, J. Math. Phys. 12,441 (1971). 
8M. Hall, The Theory o/Groups (McMillan, New York, 1959). 

Abresch et al. 2486 



                                                                                                                                    

Equivalence of induced representations 
P. M. van den Broek 
Institutefor Theoretical Physics, University of Nijmegen, Nijmegen, the Netherlands 

R. Dirl 
Institutfiir Theoretische Physik, T. U. Wien A-1040 Wien, Karlsplatz 13, Austria 

(Received 6 March 1979; accepted for publication 19 October 1979) 

Equivalence of induced representations for finite groups is considered in order to determine those 
equivalence classes of space group representations which are linked by complex conjugation . 

1. INTRODUCTION 

An interesting group theoretical problem is to correlate 
induced representations which originate from different 
members of the same orbit. The reason for considering this 
problem arises there from that, e.g., the complex conjuga­
tion (or more general automorphisms) of representations of 
a given (finite) group are of interest for physical applica­
tions. I

•
2 In particular complex conjugation ofrepresenta­

tions is of importance for the problem of determining "cou­
pling coefficients",3 whose utility in various branches of 
physics is well known (e.g., "equivalent operators"). So the 
main objective of this article is to correlate induced represen­
tations belonging to different members of an orbit, to specify 
the general results to space-group representations and to 
give rules (concerning the star and the projective representa­
tions ofthe corresponding little cogroup) determining those 
equivalence classes of space-group representations which 
are linked by complex conjugation. One of the reasons for 
discussing the last problem is to generalize the results of Ref. 
2 to arbitrary space groups, since in Ref. 2 only space groups 
were considered which contain the inversion as point group 
operation. 

The material is organized as follows: In Sec. 2 the usual 
induction procedure4

.
5

.
6 is briefly recalled. In the following 

section we discuss in general the problem of carrying out the 
induction procedure from different members of the same or­
bit. There we derive the conditions under which the corre­
sponding representations are identical. In order to be able to 
apply the results to space-group representaions, we recall 
briefly their definitions and properties in Sec. 4. Section 5 is 
devoted to derive representations of the little cogroups 
whose corresponding space-group representations are ob­
tained by induction from different members of the consid­
ered star. These results are then used in Sec. 6 to derive the 
corresponding equivalence relations for complex conjuga­
tion and to verify the results of Ref. 2. 

2. THE INDUCTION PROCEDURE 

Let H be an invariant subgroup of a given finite group 
G. The elements of Hare dentoed by a,b, ... (identity e), the 
elements of the factor group K = G / Hby a,/J, ... (identity e), 
and for each aEK, a fixed chosen right coset representative is 
denoted by r(a), where r(e) = e. 

Let.:i be an unitary irreducible representation (unirrep) 
of H. For each aEK we define.:i a by 

.:ia(a) =.:i (r-I(a)ar(a» , for all aeH, (2.1) 

which admits to define the little cogroup 

K = 1 aEK l.:ia ~ J ~K . (2.2) 

Hence the corresponding little group of.:i is given by 

L = 1 ar(a)laeH, aeK J • (2.3) 

Since for each aeK there exists a unitary matrix U (a) 
satisfying 

.:i (a) = U(a).:i (r-l(a)ar(a»U + (a), for all aeH, (2.4) 

the following matrices 

V (ar(a» =.:i (a)U (a), for all aeH and aeK, (2.5) 

form a projective unirrep of L which belongs to a factor 
systemJl.:! of K, i.e., 

V (ar(a» V (br(f3» = Jl.:! (a, (J) V (ar(a)br( (J». (2.6) 

The subscript.:i occurring in the factor system Jl shall indi­
cate that the factor system depends on the given unirrep .:i. 
In fact only the equivalence class of Jl is determined by .:i. 
The actual form of Jl.:! still depends on the choice of the 
phases of the matrices U(a). 

Due to the known induction procedure the allowable 
unirreps of L are given by 

D (ar(a» = V (ar(a» ® E (a), for all aeH and aeK, 
(2.7) 

where E runs through a complete set of projective unirreps of 
K which belong to the factor system Jl ~ . 

Summarizing the induction procedure which gives a 
complete set of unirreps of G, one has a proceed as follows: 

(i) Take one.:i from each orbit of unirreps of 11, where 
the orbit of.:i is defined to be the set l.:i a I aEK J, 

(ii) Construct for each such.:i the allowable unirreps of 
L by means of(2.5) and (2.7), 

(iii) Induce these allowable representations to G, where 
the general definition ofthe induced representation (,,@ tG) 
of G which is induced from ,,@ is as follows: If a left coset 
decomposition of G with respect to L is given by G = ~jgjL, 
then 

(,@tG)j/.ks(g) = 8(gj- Iggk' L),,@ /s(gj-Iggk ) , (2.8) 

where 

8(g, L) = {
O, 

1 , 

if gEL, 
if gEL. 

(2.9) 
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3. INDUCTION FROM DIFFERENT MEMBERS OF THE 
ORBIT 

For the following considerations it is assumed that the 
given unirrep D of G has been obtianed by inducing the al­
lowable unirrep Ii) of L to G, where Ii) is given through (2.7) 
and (2.5) for some unirrep il of H and some projective unir­
rep Eo of K. For notational convenience we will write 
Ii) = (il, Eo). 

In this section we will examine how D is obtained, if we 
do not start fromil, but from a different member of the orbit 
of il. Suppose we start from il y where yl=K we derive by 
means of 

(ily)a(a) = il t(r-I(ay)r(a)r(y»il (r-I(ay)ar(ay» 

Xil (r-I(ay)r(a)r(y» , (3.1) 

that the equivalence relation 

(ily)a=il ay (3.2) 

holds, since r - I (ay)r(a)r(y)ER. Consequently 

(3.3) 

which implies that the corresponding little cogroup Ly is 
given by 

Ly = r(y)Lr - I (y) . (3.4) 

~urthermore for each {3EXy there exists a unitary matrix 
U ( {3) such that 

(ily)(a) = U({3)il y(r- I({3)ar({3»U t ({3) , (3.5) 

or, with (2.1), 

il (a) = U ({3)il (r - I (y)r - I ({3 )r(y)ar - I (y)r( {3)r(y» 

X ut({3). (3.6) 

Utilizing (2.4) we rewrite (3.6) as 

il (a) = U({3)U t (y-l{3y)il t(xy({3»il (a) 

Xil (Xy({3»U(y l{3y)Ut({3), 

where we have introduced the notation 

x)'({3) = r·· l(y)r({3)r(y)r-l(y-l{3y) , 

(3.7) 

(3.8) 

which is an element of H. Due to Schur's lemma we may take 

U({3) = il (Xy({3»U(y I {3y), for all {3EXy . (3.9) 

Consequently in accordance to (2.5) we define by 

V(br({3» = il/b )U({3), for all bER and {3EXy , 
(3.10) 

a projective unirrep of L y • Its multiplication law is given by 

V (br( {3» V(b 'r( {3 '» = p" ({3, {3 ')V(br( {3)b 'r( {3 '» , 
J. 

(3.11) 

where the factor system P",. of Ky is correla~ed by a simple 
formula to the original factor system p" of K 

p",({3, {3 ') = p" (y - l{3y, Y -1{3 'y), for all {3, {3 'EX)' . 
(3.12) 

In order to verify (3.12) one has to use (3.8), (3.9), and (3.11), 
where it suffices to set b = b ' = e. Now it is obvious that the 
projective unirreps E of Ky with factor system P.l, can be 
chosen as 

(3.13) 
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where E runs through all projective unirreps of K, which 
belong to the factor system il y' Hence the corresponding 
allowable unirreps of Ly are given by 

f5j;(br({3» = V(br({3» ®E({3), 

for all bER, {3EXy , 

and the unirreps of G can be written as 

(f5j; tG)j(,ks(g) = O(gj-Iggk , Ly)f5j; (s(gj -Iggk) ' 

(3.14) 

(3.15) 

where thegj are left coset representatives of G with respect to 
L y • The aim of this section is to show that the equivalence 
relation 

(3.16) 

holds. In order to simplify the following considerations we 
choose the left coset representatives gj as 

gj = gjr I(y). (3.17) 

With this choice (3.16) becomes an identity: 

[(il,Eo)iG](g) = [(ily,Eo)tG](g) for all gEG. (3.18) 

In order to prove this result we have to show that 

O(gj-lggk,Ly)=o(gj-lggk,L), for all gEG, (3.19) 

and 

(ill" EO)(gj-lggk ) = (il, Eo)(gj- Iggk ), 

for all gEgjLgk- I = gjLygk- I . (3.20) 

The proof of(3.19) is trivial. The proof of(3.20) is less trivial, 
but~till straightforward. If gj- Iggk = ar(a) with aER and 
aEKthen 

(il, Eo)(gj-Iggk ) = V (ar(a» ®Eo(a). 

Now 

gj- Iggk = r(y)ar(a)rl(y)rl(yayl)r(yayl) . 

Since r(y)ar(a)r I (y)r I (yayl)ER we have 

(3.21) 

(3.22) 

(ill" Eo)(gj· Iggd = V (r(y)ar(a)rI(y» ®Eo(yayl). (3.23) 

But Eo (a) = Eo(yayl), so (3.20) is proved if we show that 

V (ar(a» = V (r(y)ar(a)r-I(y» . (3.24) 

This equation can be proved in a straightforward way, first 
using the definitions (2.5) and (3.10), then the definitions 
(2.1), (3.8), and (3.9). This completes the proof of (3.18) for 
the case that the leftcoset representatives satisfy (3.17); 
therefore for arbitrary leftcoset representatiaves (3.16) has 
been proved. 

4. UNIRREPS OF SPACE GROUPS 

In order to be able to specialize our results to space 
groups let us briefly recall the basic definitions and notations 
concerning such groups with their unirreps. Let Gbe a space 
group and H = Tits subgroup of translations. The elements 
of Tare denoted by (E It) (or briefly tET), elements of 
G I H = K = P are denoted by R (representing either an ab­
stract group element of the point group P or the correspond­
ing faithful m~~rix representation6

) and coset representa­
tives are denoted by (R IT(R» [where T(R) represents 
non primitive lattice translations], so that a general group 
element takes the form (R IT(R ) + t). The multiplication 
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rule reads as 

(R,IT(R,) + t,)(R2IT(R 2) + t2) 

= (R,R2IT(R,R2) + t(R" R2) + t, + R,~), 

where 

(4.1) 

t(R" R2) = T(R,) + R,T(Rz) - T(R,R 2). (4.2) 

Let us start from the unirrep ..1 q of H given by 

..1 q(t) = e - iq.t, qEBZ, (4.3) 

where BZ denotes the Brillouin zone. Because of 

..1~(t) =..1 q«R IT(R »-'(E It)(R IT(R ») 
=..1 q(R -It) = e - iRQ·t , (4.4) 

the corresponding little cogroup K = pq is given by 

PQ = {REP IRq = q + Q{RqJ} , (4.5) 

where Q {Rq J is a reciprocal lattice vector. Hence 

Gq= {(R IT(R)+t)IREPQ,tETJ. (4.6) 

Obviously we can choose 

UQ(R) = 1, for all REPq, (4.7) 

which implies that 

Vq(R IT(R ) + t) =..1 q(t) , for all REPq, tET, (4.8) 

and that the corresponding factor system is given by 

flQ(R, R ') = eiq.t(R.R '), for all R, R 'EPq . (4.9) 

Hence the allowable unirreps of G q are given by 

g;q(R IT(R ) + t) = e - iq·tB (R) for all REPq, tET, 
(4.10) 

where B runs through all inequivalent projective unirreps of 
p q with factor system flq(R, R ')* = e - iq-t(R,R '). 

The corresponding induced unirreps of G can be writ­
ten as 

(g;qrG)jt.ks(R IT(R) + t) 

= D(~j-IR~k' pq)g;':s«~j IT(~)-I 
X (R IT(R) + t)(~k IT(~k)))' (4.11) 

where (~JT(~) are left coset representatives of G with 
respect to G q. 

5. INDUCTION FROM DIFFERENT MEMBERS OF THE 
STAR 

Let q' be a member of the star of q where 
q'=Roq+Q, RoEP, Riyq, (5.1) 

such that q'EBZ. From the results of Sec. 3 it follows that 

pq' = RoPqR 0- 1 (5.2) 
and 

Gq' = (RoIT(Ro»Gq(RoIT(Ro»-' . (5.3) 
Equation (3.9) specializes to 

Uq'(R) =..1 q(xR " (R » 
= exp[ - iq'xR,,(R )], for all REPq', (5.4) 

where the vectors x R" (R ) are given by 

(E IxR" (R » = (RoIT(Ro»-'(R IT(R » 
X (RoIT(Ro»(R 0-

1 RRoIT(R 0-
1 RRo» . (5.5) 
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A simple calculation gives 

xR,,(R) = R 0-'[ - T(Ro) + T(R) 

+ RT(Ro) - RoT(R 0- IRRo)] . (5.6) 

Note that usually one would take Uq'(R ) = 1. Therefore Eq. 
(5.4) will turn out to be the reason for the occurrence of 
unimodular factors. 

From (3.16) it follows that the allowable unirrep g;q of 
G q given by (4.10) corresponds to the allowable unirrep g; q' 
of G q' which is given by 

g;q'(R IT(R) + t) 
= e - iR"q·te - iq'xR,(R) B (R 0- I RRo) , 

for all REPq' = RoPqR 0- I • (5.7) 

Hence if coset representatives are used which are defined by 
(3.17), it follows from (3.18) that 

(q, B )tG = (q', B ')tG , (5.8) 

where we have introduced obvious notation with 

B '(R ) = exp [ - iq'xR" (R )]B (R 0- IRRo) , 

for all REPq' . 

6. COMPLEX CONJUGATION OF SPACE-GROUP 
REPRESENTATIONS 

(5.9) 

Now we are in the position to consider in more detail 
the problem of complex conjugation of space-group unirreps 
(q, B )tG, where q belongs to the so-called "representation 
domain" ..1 BZ ofBZ. From (2.8) and (4.10) it follows that 

[(q,B)rG]*=(-q,B*)tG. (6.1) 

The vector - q does not in general belong to..1 BZ, not even 
to BZ. Since it is usual to consider only vectors from..1 BZ we 
want to rewrite the right-hand side of (6. 1) as (q', B)tG, 
where q' E..1 BZ. Here q' is of course of the form 

(6.2) 

for some RoEP and some Q from the reciprocal lattice. Both 
Ro and Q can be easily determined in practical problems. 
The form of B ' can now be determined at once from (5.8) and 
(5.9): 

B '(R ) = exp [iq·xR" (R )]B *(R 0-' RRo) , 

for all REP - R"q = R(;> -- qR () I. (6.3) 

SO our result is 

[(q, B)tG]* = (- Roq + Q, B')tG, (6.4) 

whereB' is given by(6.3)andRoand Q are easily determined 
such that - Roq + QE..1 BZ. Note that the equals sign in 
(6.4) should be replaced by an equivalance sign if the condi­
tion (3.17) is not taken into account, which says that the left 
coset representatives of G with respect to G q (respectively 
G - R"q) should be related as follows: If (Rj IT(R) is thejth 
left coset representative of G with respect to G q, then 
(RjRoIT(RjRo» is thejth left coset representative of G with 
respect to G - R"q. Also the equals sign should be replaced by 
an equivalence sign if B' is not taken equal to the right-hand 
side of(6.3) but is only equivalent with it. This may happen 
for instance if one determines only the characters of B ' from 
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(6.3) and then takes the matrices of B' from some other 
source. 

Let us consider the special case 

IeP~GIT, (6.5) 

i.e., the inversion I belongs to the point group P. This special 
case was considered in detail in Ref. 2. For this case we have 
to distinguish two cases. Especially if for a given q we have 
IEPq or IeP q. 

Case IEP q: Because of (6.2) it is possible to choose 
Ro = I what leads us to 

B '(R) = /q.x,(R)B *(R), for all ReP q , (6.6) 

where 

x/(R) = T(I) - 2T(R ) - RT(I) . (6.7) 

Changing the factor system of the projective unirreps ac­
cording to Eq. (1.9) of Ref. 7, i.e., 

B (R ) = e - iq·".(R) F (R ) , 

B '(R ) = e - iq·".(R )F'(R) , 

we obtain 

F'(R) = ei(q - R -'q)''r(l)F(R)* , 

(6.8) 

(6.9) 

(6.10) 

which coincides with Eq. (3.8) of Ref. 2, if one uses that 
Rq = q + Q{Rq}, ifReP q

• Obviously ifq does not belong to 
the boundary of..:i BZ, we have Q{Rq} = 0, which implies 
that 

F(R)* = F'(R), for all RePq . (6.11) 

Note that we do not have B ' (R ) = B *(R ) in this case; so the 
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disappearance of the unimodular factor is due to the choice 
of the factor system. 

Case IeP q: Since we have - q = q + Q in this case we 
can take Ro equal to E in (6.2). Equation (6.4) then becomes 

[(q, B )tG]* = (q, B ')tG , (6.12) 

and Eq. (6.3) becomes 

B'(R)=B*(R), for all ReP q . (6.13) 

If changing the factor system in the same way as in (6.8) and 
(6.9) we arrive to the equivalence relation 

F'(R )~r - iQ'".(R)F *(R ) . (6.14) 

Equation (6.14) is equal to Eq. (3.16) of Ref. 2. Opposite to 
case I EP q, here the change of the factor system is the reason 
for the occurrence of the unimodular factor in (6.14). 

Concluding remarks: The aim of this paper was to com­
pare equivalent induced representations and to derive condi­
tions under what circumstances such representations are 
identical. The results obtained have been applied to space­
group representations. There we succeeded in deriving a 
simple relation which determines those equivalence classes 
which are linked by complex conjugation. 
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bC.J. Bradley and A.P. Cracknell, The Mathematical Theory of Symmetry 
in Solids (Clarendon, Oxford, England, 1972). 

7R. Dirl, J. Math. Phys. 20, 664 (1979). 

P.M. van den Broek and R. Dirl 2490 



                                                                                                                                    

Spinor fields invariant under space-time transformationsa
) 

J. Beckers, J. Harnad,b) and P. Jasselette 
Physique Thiorique et Mathematique, Universiti de Liege, cl Belgium 

(Received 12 June 1979; accepted for publication 15 October 1979) 

Spinor fields invariant under the subgroups of the Poincare group or under the maximal 
subgroups of the conformal group of space-time are analyzed. It is shown that only certain 
Poincare subgroups, all of dimension less than or equal to six, can leave two component spinor 
fields invariant, with rather severe restrictions on the fields. Tables listing all such invariant fields 
for subgroups of dimension greater than or equal to four are given. Construction of Dirac spinors 
and connections between invariant spinors and tensors are discussed: In particular it is shown 
that from any two-component spinor invariant under a Poincare subgroup a real skew-symmetric 
tensor invariant under the same group may be constructed. 

1. INTRODUCTION 

The subgroup structure of the Euclidean, Poincare, and 
Minkowskian conformal groups have received much recent 
consideration. 1-6 In particular, Patera, Winternitz, and Zas­
senhaus2

•
3 and others4-6 have determined all the maximal su­

balgebras ofthe conformal Lie algebra c(3, 1) of space-time 
and identified the complete subalgebra structures of each of 
these. For the Poincare group P(3,1), the Patera-Winter­
nitz-Zassenhaus2 classification is equivalent to one obtained 
by Bacry-Combe-Sorba.4 

These analyses have been applied to the study ofinvar­
iant fields appearing in physics in the following ways: (i) 
electromagnetic fields invariant under subgroups of the 
Poincare group were systematically studied7--9; (ii) classifica­
tions of symmetry breaking interactions in the Schrodinger 
equation were obtained1

()-12; (iii) electromagnetic 1 and 2 
forms, symmetric (0,2) tensors, and scalar densities invar­
iant under all the maximal subgroups of C(3, 1) were deter­
mined13

-
1
'; (iv) solutions to the Yang-Mills equations invar­

iant under the compact subgroups of the conformal group 
were obtained. 16

•
17 For further applications, see Beckers, 

Hamad, Perroud, and Winternitz 13 hereafter referred as 
BHPW, and also Refs. 17-19. 

In this paper, we shall be concerned with the problem of 
determining the fundamental spinor fields invariant under 
subgroups ofP(3,1) or under the maximal subgroups of 
C(3, 1). This work is a continuation of BHPW, the latter 
dealing with tensor fields and densities invariant under sub­
groups of the conformal group of space-time. 

The contents of this paper are summarized as follows. 
Section 2 presents conventions, notations, and the two meth­
ods of calculation-finite and infinitesimal-for determin­
ing spin or fields invariant under subgroups ofP(3, 1). Section 
3 deals with the explicit determination of (!,O)-spinor fields 
invariant under Poincare subgroups of dimension ;;;.4 and 
illustrates the methods with two specific examples. The re-

"'Supported in part by the National Research Council of Canada and "Les 
Accords Culturels Belgo-Quebecois, 1978". 

"'Permanent address: Centre de Recherches Mathematiques, Universite de 
Montreal, Montreal H3C 317, Canada. 

"Postal address: Institut de Physique au Sart Tilman, Batiment B.S, B-4000 
Liege I, Belgium. 

suIts are summarized in Tables I-III. In Sec. 4, the invari­
ance conditions for spinors under conformal transforma­
tions are given and it is shown that no nontrivial spin or field 
is invariant under the maximal subgroups ofC(3,1). Section 
5 discusses the construction of invariant four component 
(Dirac) spinors and the connections between invariant 2-
component spinors and real skew-symmetric tensor fields of 
rank 2. 

2. NOTATIONS AND INVARIANCE CONDITIONS 

Let M denote Minkowski space with metric gM identi­
fied with the diagonal matrix 

gM - diag(1, - 1, - I, - 1). (2.1) 

According to the notations ofBHPW, the Poincare transfor­
mations are generated by the following vector fields: 

Mill' = - x/1Jv + XVJ/1 ' (2.2a) 

P/1 = - J/1 ' (2.2b) 

where the M/1v's generate homogeneous Lorentz transfor­
mations and the P/1 's space-time translations. The corre­
sponding Lie algebra [the Poincare algebra p(3,1)] is 

[M/1v,Mar ] = g,wMvT + gVT M/1U - g/1T M VU - gvuM/1T , 
(2.3) 

[M,H.,PU] = g/1U PV - gvu P/1 . 

We denote an arbitrary vector field induced by a one­
parameter subgroup of P(3, 1) as 

X = ~uI'vM/1v + a/1P/1' (uI'v = - (UV/1), (2.4) 

corresponding to the infinitesimal transformation 

X ...... X· : x'/1 = x/1 - ul'vxv + a/1. (2.5) 

The uI'" are real constants more conveniently defined by 

¢J i = WO
f
, • • 

()
; _ ~ ijk (l,j,k = 1,2,3), (2.6) 

- 2,€ (Ujk, 

in correspondence with the frequently used (Lorentz) basis 
for the M/1v 's, i.e., 

K; =Mo; = -xoJ; -x;Jo , 
(2.7) 

L; = - !€;jkMjk = - €ijk xjJk . 

In terms of Eqs. (2.6) and (2.7), the vector field X can 
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also be written: 

x = cl>·K - O·L + a·P. (2.8) 

For later use, let us identify the three-dimensional Abelian 
subgroup generated by the algebra 

I Po + P3,A I ,A2 J, (2.9) 

where 

(2.10) 

We wish to study invariant spinor fields and therefore 
must regard the group generated by the homogeneous Lo­
rentz subalgebra I MI"v J as the universal covering group of 
the homogeneous Lorentz group, i.e., the group SL(2,q of 
complex unimodular 2 by 2 matrices. The spinors transform 
according to irreducible representations ofSL(2,q and their 
properties are well known. 2G

-
22 To each finite Lorentz trans­

formation A corresponds a matrix UE SL(2,q defined up to 
a sign [A++(U, - U)] which acts on fundamental (-!,O) spin­
ors VE (;2 as 

U:V~UV. (2.11) 

The correspondence is determined by associating with each 
point x = (XO, Xl, x 2, x 3) the Hermitian 2 X 2 matrix: 

( 
XO + x 3 

Xl _ iX2) 
X - X'l(TI" = I . 2 olE JH(2) 

x + IX X -X' 
(2.12) 

(with (T; the Pauli matrices and (To = 1) upon which the A 
action is 

x-+UxU+ ~ 

and translations are given by 

x-+x + ii 
where 

ii - all(T'l E JH(2). 

(2.13a) 

(2. 13b) 

Under an infinitesimal (A,...., 1 - OJ,a < 1) Poincare 
transformation (2.5), we get 

x'~UxU + +a, 
where 

and 

n = cl> + iO. 

(2.14) 

(2.15) 

(2.16) 

With these conventions, the (~,O) representation of sl(2,Q is 
given by 

p(L;) = - (i!2)(T;, p(K;) = ~(T; . (2.17) 

In particular, we have 

- 1) (0 
0' p(A 2 ) = 0 (2.18) 

The spinor fields corresponding to this (~,O) representation 
are two component quantities denoted hereafter as If/ 
=(If/ 1,lf/ 2

). 

The invariant spinors can be obtained through two al­
ternative methods (see BHPW for the analogous methods 
applied to tensors and densities): 

(1) a global method based on the determination of (reg­
ular and singular) orbits, their corresponding isotropy 
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groups, and on the action of the group matrices on the spin­
ors (a regular orbit is one belonging to an open stratum; the 
others, oflower dimension, are called singular: see BHPW, 
Sec. 3); 

(2) an infinitesimal method, involving the solution of 
the Lie differential equations expressing invariance. 

Let us summarize the procedure for each. 

A. Global method 

Given a (pseudo-) Riemannian space M on which a Lie 
group G of isometries acts, the determination of all possible 
spin or fields E D (1/2.0) which are invariant under G proceeds 
through the following steps: 

(i) Decompose Minto G orbits. (Generally, there are a 
finite number of generic, open strata, whose union is a dense 
sub manifold of M, and it is sufficient to consider only these.) 

(ii) Choose a convenient pointpo on each orbit such that 
their union forms, if possible, a smooth cross section ~ to the 
orbits in the generic strata, and identify the isotropy group 
Go (Po) C G at each Po. Such a cross section might only exist 
locally. 

(iii) Find a spinor atpo invariant under G (Po) by solv­
ing the linear algebraic equations expressing this invariance. 

(iv) Apply the group transformations in order to obtain 
the invariant spinors at any point on the orbit of each Po' 

(v) Allow the free parameters determined in (iii) to vary 
smoothly along the cross section ~. 

We refer the reader to BHPW for a more complete dis­
cussion (in the case of tensors and densities) and for specific 
examples involving subgroups of the conformal group. 

For tensors, no restriction need be made on G, except 
that it be a smooth transformation group. For spinors, how­
ever, we are limited to isometries in order that the group 
action may be lifted to the bundle of spin or frames. This may 
be extended to include conformal transformations by choos­
ing a scaling weight for the spin or representation. However, 
for more general transformation groups, the differential ac­
tion cannot be defined on finite-component spinor represen­
tations. In the following we shall only be concerned with 
Minkowski space and subgroups of P(3, 1) and C(3, 1). 

B. Infinitesimal method 

The problem reduces here to solving the equations 
which express the vanishing of the Lie derivative of the 
spinor 

Lx.If/=O, (2.19) 

where IX; J are the vector fields induced by the one-param­
eter subgroups of G. For finite P(3, 1) transformations, the 
invariance condition for (~,O) spinors 

If/ (gx) = p(g)1f/ (x), 'V gE G, (2.20) 

becomes 

I/I(Ux U .,. + ii) = UI/I(x). (2.21) 

Retaining only first order terms [Eqs. (2.14)-(2.16)] gives 
the infinitesimal invariance condition 
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TABLE I. Six, five, and four-dimensional NON-SPIPS. 

PWZ notation' Generators 

[L,Kl;[L,Pl;[L"K"K"P",P"P,l; 
Six dimensions 
P,.,;P,,;P4 .,; 

Pf,,2;PX.l;Pq . 1 [L,.A, .A"P" + PJ,P"P,I;[K,.A"p,. 1;[L"K"p,. I 
Five dimensions 
P2.~;PX .. ,; 

P<;,2;Pll.1; 

PI!.I;PlJ.l 

[L"K,.A, .A"P" + P, I ;[K) .A"P",P, ,P, I; 
[L"K"P" + P"P"P,l;[L) cos! - K) sinf,P,. I; 
[L"P,.1;[K"p,. I 

[L"K,.A, .A,I;[L,Po 1;[L),K"K"P, I; 
Four dimensions 
P2A;P".,;P4.-y.; 
p o."\ ;Pq,J ;Pq,4; 

P".2;P'2.,;P'2.4; 
P[1.,;~.7;Po.X 

[L,.A, .A,.p" + P,l;[L).K,.p,.p,I;[L,.K,.P".P,I; 
[L).P" + P,.P,.p,I;[L,.Pl;[L).P".P,.P,I; 
[K"p".p,.p,I;[L,.A, +P,.A, +P"P" +P,l;[L,.A, -P,.A, -p,.p" +P,l 

(2.22) 

Equation (2.22) corresponds to the following set of condi­
tions on the two spinor components: 

~ 1[11 = ~ [.n 31[11 + (11 I - ifl2)1[I2] (2.23a) 

and 

(2.23b) 

Let us remark that the analogous conditions for invari­
ance of 2 forms F are written (Combe-Sorba8) 

~E + aXE + cf»xB = 0 (2.24a) 

and 

~B + aXB - cf»xE = 0, (2.24b) 

whereE i = FO i andB i = ~EijkFjk are, respectively, the "elec­
tric" and "magnetic" components. The Bacry-Combe­
Richard' conditions correspond to ~ =0 in Eqs. (2.24). 

Since we shall be interested in Dirac spinors (see Sec. 5) 
we also need information on spinors of the other (nonequiva-

lent) fundamental representation D (0,1/2) of SL(2,q acting 
on dotted spinors I vQ 1 by the complex conjugate transforma­
tion VQ_UQbVb. The corresponding spinor fields will be de­
noted ¢ (x). In correspondence with Eq. (2.21), we have for 
(O,~) spinors 

¢ (UxU + + Ii) = U¢ (x) 

and, in infinitesimal form, we get 

~¢ = ~(O*.O'*)¢ 

(2.25) 

(2.26) 

(0* and 0'* are the complex conjugates of 0 and 0'). In gen­
eral, a (p/2,q/2) spinor will transform under any UESL(2,Q 
according to 

Iv : l/Ia.o .. Q/y>bl···bq 

-u a,c, ... U a"c" Ubl d I ... U b.,dql[l c, ... c"d, ... dq 

so that the invariance conditions generalizing Eqs. (2.21) 
and (2.25) become 

_ U a,c, Ua"c"U-b,d, U-b.d IT,CI .•. c,dl .. ·d(-) - ••• ••• qY' I </ X (2.27) 

TABLE II. Six- and five-dimensional SPIPS and their invariant (!,O)-spinor fields. 

PWZ notation 

Six dimensions 
PICl• 1 

p,., 

~5} 
Ph .6 

p,., 
Five dimensions 
P14. 1 

P.O.h 
p,.) 
p,., 
P,. 
PlO,2 

'fix,IO 

Generators 

{A,.A,.P~1 

{K).A, .A2 ,PO + PJ.p,.p,1 

{L) ± (Po - P,).A, .A,.po + P,.P,.P,1 

IA,.P,.1 } 
{A,.A, + !(P" - PJ).po + PJ.p,.p,1 
{K,.A, .A,.po +p3 .p, 1 
{K,.A, 'Po + P3 .P, .p,l 
{K,. + (1!a)P,.A, .A,.po + P"P,l.a>O 

{A,.A"Po +pJ.p,.p, 1 
{KJ + (1!a)P,.A 2 ,Po .P,.P3 1.a>0 

as [(t z)/2) '12; A. B arbitrary constants. 
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Fields a 

(A.O) 

(S" 'A.O) 

(e "+ (1/4)(1 - z\O) 

(s , ... cot/A.O) 

(A.O) 

(s -'A.O) 

[S(t - z).O) 

(eUx12A.O) 
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TABLE III. Four-Dimensional SPIPS and their invariant O,o}-spinor fields. 

PWZ notation 

P IO.3 
PI •• 2 

P.O.9 ;i'IO.1O 
PI •• 3 

p •. , 

P.o .• 

Po.12 

P".I 
Pl3•2 

P II •2 

P.2.11 ;P.2.12 

P.2.l3 

P.2.1. 

P. •. IO 
P. •. 11 ;P. •. 12 

Generators 

IA,~,Po +P3.P2l 
IA"Po + p"PI.P2l 
IA, ±P2.A2.PO +P3.PI l 
IA"Po.P"P3l 
IK3.A"PO +P3.P2l 
IA I.A2 - !(Po - P3).PO + P3.PI l 

IP"l 
IK3.PO +P3.P"P2l 
I Lf.Po + P3,PI .P2 l 
I L3 ± l(Po - P3 ).po + P"P"P2l 

{L3 + ~ Po.p}. a>O 

{L3 + ;b P"PO.P"P2}. b #0 

{K3 - ~ P"PO.P"P3}. a>O 

I A2 - !(Po - P3 ).po + P3 .p"P2 
IA2 ± PI.PO.P2.P3l 

I K3 .A"Po + P"PI l 

IK3.A1.A2.PO +P3 l 

{K3.A"PO +P3.P2 - !PI}. b#O 

P.O.7 

Po. II 

{AI + ! P2.A2 - !(Po - P3).PO + P3.PI}. b #0 

IK3 +aP2.A2.PO +P3.Pd. a>O 

P,.7 

Po.l3 

P'.3 

IK3 + aPI.A I .A2.PO + P3 l. a>O 

{K3+ap,.A2.PO+P"P2- !PI}. a>O.b#O 

ILf.A, .A2.PO + P3 l 

at = [(t - z)12] 112; A. B = arbitrary constants. 

in finite form, and 

~ l/Io .... a,b •... 6. = L [!(O·O't·c.l/lo, ... c •... a,b •... 6. 
k 

+ !(O·.0'·)6.d.l/la •... a,b, ... d .... 6.] 

in infinitesimal form. 

(2.28) 

3. (l,O)-SPINOR FIELDS INVARIANT UNDER POINCARE 
SUBGROUPS 

According to the subgroup classifications2 
•• with re­

spect to the Poincare group, there are, up to a conjugation, 
11 subgroups of dimension n = 6, 13 with n = 5, 39 with 
n = 4. In Tables I-III, these are all listed in the notation of 
Ref. 2 and a representative of each conjugacy class of subal­
gebras is identified by its basis elements. We mention neither 
the subgroups of dimension n > 6 for reasons which will be­
come evident below, nor those of dimension n.;;;3 for brevity. 

Before the determination of the nontrivial (!,O)-spinor 
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Fields" 

[S( 5).0] 

[S(x).O] 

[ 5 -IS(X).O] 

(s[ y+ (t~Z)2 ].0) 
I eaxS [e2aX(t - z)].Ol 

equivalently 

15 -'S[2ax + In(t-z)].0l 
(A,B) 

(5 -'A.5B ) 
(5 - I + i cotfA. 5 I - i cotfB) 

(e+i(l-Z)A. e±~l-Z)B) 

(e - ialA. eialB) 

(e - ibzA. eibZB) 

[A + i(t - z)B,B ] 

(A ±ixB.B) 

( t - I A - ~ y t - lB. tB ) 

[t -'A + !(x - iy)t -'B.tB] 

[t -'A - ~ (bx+y)t -'B.tB] 

(A + (i(t - z) _ b [ y + (t ~ z)' ]}B.B) 

[t -'A - -i<y+aln t2)5 -'B.tB ] 

[t -'A + !(x +a Int2 - iy) t -lB. tB] 

[5 -'A - -i<bx+ y +ablnt2)t -IB.5B ] 

[t -I - ,cotfA + !(x _ iy)S -I + icotlB.t I +icotlB] 

fields invariant under the subgroups of P(3, 1), let us distin­
guish between two kinds of subgroups of P(3, 1): 

(a) Those leading to nontrivial invariant (!,Q) spinors 
will be called "SPIPS" (Spinorial Poincare Subgroup): a 
SPIPS G is a subgroup of P(3, 1) which leaves invariant at 
least one (!,O)-spinor field 1/1 (1/1 #0) whose components are 
(real or complex) functions defined and differentiable on M 
(or at least on the generic strata); 

(b) the remaining subgroups ofP(3,1) will be called 
"NON-SPIPS". 

Applying the methods described in Sec. 2 leads to the 
following results: (1) The uniform and constant spinor field 
1/1 = (1/11 ,1/12 ) = (A,B) has the group generated by 

K={AI ,A2,PIl J (3.1) 

(up to a conjugation) as stabilizer. This Poincare subgroup of 
dimensions6 will be called the "kinematical" group7 of 1/1. 
(2) Every SPIPS is of dimension less than or equal to 6. 
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(3) There are five SPIPS of dimension 6 and 7 of dimension 
5 and 27 of dimension 4. These are specified in Tables II 
(n = 6,5) and III (n = 4). The explicit invariant spinor fields 
are also given. The NON-SPIPS of dimension 4,5, and 6 are 
listed in Table I. 

We now prove points (1) and (2) and illustrate one ex­
ample of a SPIPS determined by the global method and one 
by the infinitesimal method. 

Statement (1) follows directly from the global or the 
infinitesimal analyses. A basis can always be chosen in Min­
kowski space, so that the constant 1/12 vanishes. Then, from 
the representations (2.17) and (2.18) of the generators, it is 
obvious that K, and nothing else, stabilizes 1/1. By the infini­
tesimal method, we immediately get from Eq. (2.22) 

(00 0')1/1 = (cj) + i9)·0'1/I = 0. 

If 1/12 vanishes, this gives 

fl 3 = 0, fl I = _ ifl 2, 

or 

¢ 3 = e 3 = ° and ¢ I = e 2, e \ = _ ¢ 2. 

So the vector field X defined in Eq. (2.8) reduces in this case 
to 

(3.2) 

which is the general element in K. 
Statement (2) follows from an argument similar to that 

used by Combe-Sorba" for the case of skew tensors. We may 
assume that the origin in M lies on a regular orbit since, if it 
did not, we could take another representative of the same 
conjugacy class of subgroups for which it does. At the origin, 
the isotropy group G (0) is contained in the homogeneous 
Lorentz subgroup, and by the above result must be conjugate 
to a subgroup generated by I A \ .A2 1. Since dimG (0),.;;2, and 
the orbit, which is diffeomorphic to G /G (0), has dimension 
,.;;4, we must have dimG,.;;6. 

Let us now consider the example of the algebra 

P7.7=!K3 +aP\.A 1 .A2,Po +P3 1 (a>O) (3.3) 

from Table III. In order to apply the global method, we must 
identify the group to which it corresponds. We take this to be 
the subgroup G7 .7 C SL(2,C) X JHl(2) of the Poincare spinor 

:,O,U~C~O::~~~y~f~I'[::;(' ~ )a
l 

Of~h(::=)J ' 
° exp - -

2 

a(a,A ) ~ (~ a;) ~, a, P,y,AE R, (3.4) 

i. Generic strata (regular orbits) 

Applying! U(a,/3,y),ii(a')')1 to the point Po 
=(1,0,0, - 1) maps it to the point with coordinates 

t+z=U+2/32+2r, t-z=2exp(-a) 

x = aa - 2y exp( - ~ ). 
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y = 2/3 exp( - ~ ). 

The orbit is therefore the open submanifold t - z> 0. Simi­
larly, the orbit of ( -1,0,0,1) is the submanifold t - z < 0. 
The isotropy group for both these points is the identity ele­
ment; therefore, their orbits belong to the same stratum. 
Their union is an open dense submanifold. Therefore, any 
other orbit is of smaller dimension and belongs to a different 
stratum. Thus, the union of these two orbits forms the single, 
generic stratum. 

ii. Singular strata 

Applying! U(a,/3,y),ii(a')') I to Po(Yo)=(O,O, Yo ,0) 
gives p = (t,x, y,z) with 

t = z = ,.t - /3 Yo exp( ~ ). 
x=aa, 

y=Yo· 

This defines a family of orbits, parametrized by Yo, with 
t - z = 0, y = Yo' The isotropy groups Go (Yo) are given by 

Go(Yo) = {(~ - YI- i(3), C/3;o ~)}. 
For Yo #0 these are all conjugate in G7•7 , and therefore the 
union of such orbits forms a stratum. For Yo = 0, however, 
the isotropy group belongs to a different conjugacy class (in 
G7•7 ), and therefore the orbit of the origin is itself a singular 
stratum. 

iii. Invariant fields 

Since the isotropy group at (1,0,0, - 1) is the identity, 
there is no isotropy constraint and we may take the field to 
have any value 

if/(1,0,0, - I) = (~). 
Applying the group transformation! U (a,/3,y),ii(a,). ) I, the 
invariance condition (2.21) gives 

1/1 (t,x,y,z) 

=(5'-IA+Hx+;~n5'2-iY]5'-IB), (3.5) 

where 5' = [(t - z)/2] 112. This expression is valid on the or­
bit t - z> 0. Similarly, starting from ( - 1,0,0,1), we define 

if/( - 1,0,0,1) = (~:) 
and, applying the group transformation, obtain 

if/ (t,x,y,z) 

= (1] lA' + (x +1]~;2 - iy)1] - IB' ) , (3.5') 

where 1] = [(z - t )/2]112. This is valid for the orbit 
t - z < 0. The values of the arbitrary constants (A,B) and 
(A ',B ') are a priori unrelated. However, we may relate them 
by adding some reasonable further assumption, such as anal­
yticity, which implies that the expression (3.5) holds 
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throughout both regions x - z < Oandx - z> 0, with a suit­
able Riemann sheet structure chosen for [(t - z)/2] 1/2 and 
In[(t - z)/2]. In Table III we have only listed the expression 
(3.5). For this, as for every other case listed in which a singu­
larity occurs dividing the space into disjoint regions, it is to 
be understood that the arbitrary constants (A,B) and func­
tions S (u) may be chosen differently in the various regions. 

For the singular orbits, the isotropy constraints at the 
points (0,0, Yo ,0) imply that the field 'f/s takes the form 

( S(Yo») 
'f/s(O,O, Yo ,0) = ° . 

Applying the group transformation ( U (a,(J,y),ii(a,A) J, the 
invariance condition (2.21) gives 

(
exp( ~ )S(y») 

'f/s(t,x,y,z) = 2~ (3.6) 

for t - z = O. A smooth cross section (O,O,y,O) to the singular 
orbits exists, and we may pick S (y) to be a smooth function. 
However, there is no way to extend these fields off the singu­
lar submanifold t - z = ° without breaking the invariance. 
It is precisely on this submanifold that the singularities of 'f/ 
occur. 

We now apply the infinitesimal method to the subgroup 
of dimension 4 generated by 

Ps.12 - (K, +aP"A 2 ,PO +P3 ,P2 J (a >0). (3.7) 

Invariance under P2 [a = (0,0,1,0), c!» = 9 = 0] and 
Po + P3 [a = (1,0,0,1), c!» = 9 = 0] implies through Eq. 
(2.23) that the spinor components are of the form 

'f/I = 'f/I(t - z,x). 

Invariance under A2 - LI + K2 [a = 0, c!» = (0,1,0), 
9 = ( - 1,0,0)] gives 

[ y( ~ + ~) + (t - z) ~] 'f/ I = - i'f/ 2
, 

at az ay 

[ y(~ + ~)+(t_Z)~]'f/2=0, 
at az ay 

which, substituting in Eq. (3.8) gives 'f/2 = O. 

(3.8) 

(3.9) 

Finally, in variance under K, + aP I [a = (0,1,0,0), 
c!» = (0,0,1),9 = 0] leads to 

(a~ +z~ +t~)'f/I=~'f/I. ax at az 

Introducing the new variable p = t - z and using Eq. (3.8) 
gIves 

a aIf/ I(X p) 
a - If/ I(X, p) = '+ ~ If/ I(X, p). 

ax a(lnp) 

Changing variables to u = (x/a) + lnp and v = (x/a) -Inp 
reduces the equation to the form 

a'f/ I(U,V) _ 1 IIf I( ) 
- 4 'Y u,V. av 

The final solution is then 

'f/ I(t - z,x) = ex/4u(t - z)- 1/4F [(x/a) + In(t - z)] 

or equivalently 
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'f/ I(t - z,x) = (t - z) - 1/2G [(x/a) + In(t - z)]. 

The invariant spinor field thus takes the general form 

'f/ = ( (t - z) I/2G [(-;:a) + In(t - z)] ) 

= (t - z) - 112G
O

[(t _z)eXIU
]). 

(3.10) 

This result can evidently also be obtained through the global 
method. Since the solutions to these differential equations 
must be interpreted in a local sense, the comments above 
regarding singularities and disjoint regions apply equally. 

All the results concerning invariant fields are collected 
in Table II and III, where we have introduced the following 
notations: g = [(t - z)l2] 1/2, A, B, are arbitrary constants; 
S (u) is an arbitrary function of the specified variables u; and 
L J = L J cosf - K, sinf when a <f < 1T,f #-1T/2. 

Many of the groups appearing in our tables are sub­
groups of others, and thus obviously have associated invar­
iant fields (e.g., P IO. I ::J P I4. 1 , P;O.6; P7,2::J P7•3 , PX.2 , ~.6' 
etc.). Our motivation in including these nevertheless is that 
usually the invariant fields associated to the subgroups are of 
more general form. 

4.INVARIANCE OF SPINOR FIELDS UNDER 
CONFORMAL TRANSFORMATIONS 

As already mentionned, BHPW have determined the 
different tensors invariant under the maximal subgroups of 
the conformal group.2J-25 Here we address ourselves to the 
corresponding problem with respect to (~,O)-spinor fields 
and we limit ourselves to the nine maximal subgroupsJ up to 
conjugacy under conformal transformations. Conjugacy 
classes under Poincare transformations are obtained by ap­
plying the transition elements listed in Table I of BHPW to 
the given representative. 

If conformal transformations are considered, the basis 
(2.2) has to be completed by 

(4.1) 

associated with dilations D and special conformal transfor­
mations C. The algebra (2.3) is supplemented by the follow­
ing nonzero commutators: 

[D,PI,] = - PII , [D,CII ] = CII , 

(4.2) 

[PII ,C,] = 2gl"D + 2MI,,· 

The vector field XEc(3, I) associated with the infinitesimal 
transformations 

Xll----'>X'I' = Xii _ (utl,.x'· + all - ;lxll - c'IX2 + 2(C'X)XII 

(4.3) 

are now defined in correspondence with Eq. (2.4) or (2.8), by 

X = c!»·K - 9·L + a·P + ;l·D + c·c. (4.4) 

Following Mack and Salam, 24 we shall regard spinors as 
induced representations of the conformal group, such that 
the isotropy group at the origin, generated by (Mfl" ,D,CII J, 
acts upon 'f/ (0) through the (~,O) representation of SL(2,rC), 
has canonical scaling dimension d = ~, and is trivial when 
restricted to the special conformal transformations. Under a 
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finite conformal transformationg: x~x; /g(x), the Jaco-
bian matrix has the following form: 

axi-' 
gJi-' (x)=-g- =gA'"v(x)exp[Ag(X)], 

v axv 

where g A i-',.(x)ESO(3, 1), Ag(X)ElR. 
The corresponding transformation of CJI is 

g : CJI (x) I--+CJI '(x) exp[ ~ Ag (x)] Ug (x) CJI [J ~ I(X)], 

where U
g
(x)ESL(2,C) is determined, up to a sign, as the ele­

ment corresponding to g A Il,,(X) under the homomorphism 
SL(2,C)---+SO(3,1). The invariance condition thus becomes 

CJI (x~) = exp [ ~ Ag (x)] Ug (x)CJI (x). (4.5) 

For finite transformations, an arbitrariness of sign must be 
retained [or the transformation group reidentified as a sub­
group ofSU(2,2)], but for infinitesimal ones, the sign may be 
fixed by requiring continuity in a neighborhood of the identi­
ty transformation. The resulting invariance condition, cor­
responding to the infinitesimal transformation (4.3), is given 
by 

(8 + ~X)CJI = !(fl'<1)CJI, 

where 

§=!iJ - AXva,. +2(c·x)(x.V) - X2(C'V) 

a a 
= ai-'a + (x'c!» - + (t c!> + xXO)·-

i-' at ax 
+ 2(cOt - c'X)(t i. + X' ~) at ax 

( a a) 2( ° a a ) - A t at + X· ax - x c at + c· ax ' 
,.[ A + A (x) = A - 2c'x,., 

fl-cl>+ i9, 
with 

cl> = c!> + c!>(X) = c!> + 2cox - 2tc, 

9 = 6 + 6(x) = 6 + 4cxx, 

(4.6) 

(4.7a) 

(4.7b) 

(4.8) 

(4.9a) 

(4.9b) 

(4.9c) 

~ I + e 2 -}- i( e 1 __ ~ 2) ) • 

_ (¢; 3 + ie 3) 

(4.10) 

These expressions are the spin or analogs of those intro­
duced in BHPW for the case of tensor fields (see Sec. 12 of 
Ref. 13). 

Equations (4.5) or (4.6) may now be applied to the de­
termination of spin or fields invariant under subgroups of the 
conformal group C(3, 1). Here, we shall only discuss its 
maximal subgroups, for which we have the following result: 
There are no non vanishing spinor fields invariant under any 
of the maximal subgroups of the conformal group. 

There are nine conjugacy classes of maximal subgroups 
ofC(3,1) which, in the notation of Ref. 13, are SIM(3,1), 
OPT(3, 1), 0(3,2), 0(4,1), 0(2) ® 0(2,2), 0(3) ® 0(2,1), 
0(2, I) ® 0(2,1),0(2) ® 0(4), and S[U(2, 1) ® U(1)]. Each 
class contains a representative for which the origin is on the 
generic stratum and all the isotropy groups for these repre­
sentatives contain the rotations generated by L 3 • However, 
no non vanishing spinor field is invariant under such rota-
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tions, as can be seen immediately from the isotropy condi­
tions at the origin. Actually, for the groups SIM(3,1), 
OPT(3, 1),0(3,2),0(4,1),0(2) ® 0(2,2), and 0(3) ® 0(2,1), 
the Poincare part is already contained in our list of NON­
SPIPS of dimension ;>4 (Table I), as may be seen by consult­
ing the list of generators given in the table of BHPW. 

5. COMMENTS 

A. Four components invariant spinors 

It is clear from Eq. (2.25) that if a (~,a) spin or CJI is 
invariant under a Poincare subgroup, its complex conjugate 
«Ji will also be an. invariant field, regarded as transforming 
under the conjugate (a,~) representation, and conversely. 
Therefore, all invariant (a,~) fields are complex conjugates 
of invariant (~,a) fields. This result is equally clear from the 
infinitesimal in variance condition (2.26) for (a,!) fields, 
which is obtained from the corresponding one (2.22) for 
(!,a) fields by replacing 

p(¢; 'K, - e'L,) = ~ ¢; '0', + ~ e'u, 
=! (fl'<1) 

by its complex conjugate 

p(¢; 'K, _ e'L,) =! ¢; '0'; - ~ e'u; 
= ! (fl*·<1*). 

(5.1) 

(5.2) 

Four component Dirac spinors transform according to 
the direct sum representation26 

D (i/2,0) ffJ D (0,112) 

and therefore are determined by a pair (CJl o
,(/> b) of2-compo­

nent spinors. The condition for invariance of the Dirac 
spinor is that both CJI and (/> be invariant. In the basis corre­
sponding to the direct sum decomposition 

R (X) = p(X) ffJ p(X), (5.3) 

we have 

(5.4) 

with 

(
0' 

~ I 

0',= a (5.5) 

In order to express an invariant Dirac field (:) in the 
standard basis, we must apply the matrix 

(5.6) 

which relates our representation (5.5) to the usual one as 
given for example by Bjorken and Dre1l27 

I ~D= I 0'. ) (0' 
a' I a (5.7) 

It follows from the results of Sec. 4 that there exists no 
nontrivial four components spinor invariant under any of 
the maximal subgroups of the conformal group C(3,1). In 
particular, there are no nontrivial "Dirac" spinors invariant 
under 0(3,2), 0(4,1), or 0(2) ® 0(4), although invariant sca­
lar densities and gauge fields under these groups are known 
to exist and have interesting properties.28

,29 
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B. Spinors and tensors 

Let us end this section by discussing the connections 
between invariant spinors and tensors. This point is of par­
ticular interest owing to the fact that skew-symmetric ten­
sors of rank 2 (2 forms) have already been studied in connec­
tion with the Poincare subgroups8,9 and the maximal 
subgroups of the conformal group. 1J 

It is well known21
,22 that tensors may be constructed 

from spinors or re-expressed in a spinor basis through the 
connecting quantities ~b introduced by Infeld and Van der 
Waarden.30 Such quantities transform as covariant 4 vectors 
(indices Il = 0,1,2,3) with respect to Lorentz transforma­
tions and as second rank spinors (indices a,b = 1,2) with 
respect to spinor transformations. The net result of the two 
laws of transformation is that the ~b are invariant. Thus, by 
contraction with~" or cr;", to every Il-index tensor is associ­
ated an aa-spinor, and conversely. In particular, we have 

(5.8) 

I.e., 

(5.8a) 

and 

(5.8b) 

Moreover, 31 if Fis a real, skew-symmetric 2-index tensor, for 
example an "electromagnetic" field, we have 

(5.9a) 

where 

(5.9b) 

is a symmetric 2 spinor, fab its complex conjugate, and 

~uh _ _ ( 0 1) b6 
c:: -E,;b - -1 0 = -f!' = -f!'. (5.10) 

(Raising and lowering of spinor indices is by contraction 
with Euh or f!'h.) 

It is clear from Eqs. (5.8) and (5.9) that if we have a 
spinor <P ab' invariant under a Poincare subgroup, the corre­
sponding tensor is also invariant owing to the invariance of 
the ~I;, Eab' and Eab and conversely. Starting from an invar­
iant (!,O) spin or 1[1 we may thus form an invariant skew ten­
sor by defining 

Faab/' = Eab «Pa «Pb + Eab l[Ia I[Ib (5.11) 

which is non vanishing if l[Ia is. [The converse is not necessar­
ily possible, since not all tensors admit a decomposition of 
the form (5.11).] 

We see that for all the SPIPS ofSecs. 2 and 3 there exists 
an invariant, skew-symmetric tensor. For example, the sub­
group generated by /5;".10 admits the nontrivial invariant 
spinor field (see Table II) 

1[1 = (A exp(ax/2),0). (5.12) 

From Eqs. (5.8) and (5.11), we find that the associated 
skew-symmetric tensor, expressed in terms of electric and 
magnetic components, isJ2 

E = (A exp(ax), B exp(ax), 0), 

B = ( - B exp(ax), A exp(ax), 0), (5.13) 
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which can also be deduced directly from Eqs. (2.24). Howev­
er, this field diverges at infinity and does not satisfy the free 
Maxwell equations. 

As a final comment, it is important to emphasize that 
the results obtained here relate to strict invariance of spinor 
fields, whereas the physically relevant criterion may only be 
invariant up to a gauge (i.e., phase) transformation, particu­
larly in problems involving coupling to gauge fields possess­
ing similar in variance properties. Such a criterion can only 
be applied, however, after a classification of the admissible 
gauge transformations corresponding to the given transfor­
mation group action has been obtained. 1J 

It would be an interesting problem, for example, to use 
such symmetry requirements to simplify the equations cou­
pling a spin or field to gauge fields assuming the spinor trans­
forms nontrivially under the gauge group. Such problems 
will be studied in future work. 

J. Beckers and P. Jasselette, with hearty and thankful 
feelings, dedicate the present work to Professor J. Serpe at 
the occasion of his retirement. 
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Oscillators submitted to squared Gaussian processes 
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ThepaperisastudyofoscillatorsgovemedbyequationsofthetypeaX (t ) + bX(t) + cX (t) = E (t), 
where a, b, c are given constants and where E (t) is for example the square of a Gaussian 
stationary process. A constructive and numerical method, using explicit expressions of Fourier 
transforms, are developed in order to compute the density of the distribution function (d.f.) of 
X (t) and of the joint distribution of X (t ) and X (t). Hence the upcrossing rates of a given level 
and an approximation of the d.f. ofmax,ETX (t) can be computed. A numerical example is given. 

1. INTRODUCTION 

The purpose 9f this paper is to present a constructive 
approach which allows us to solve some random vibration 
problems for which the classical methods of the Markov pro­
cess do not apply. Consider, for instance, a linear oscillator 

ax(t) + bx(t) + cx(t ) = E (t ), (1) 

with tER; a,h,c given constants ofR + *; and where the exci­
tation is a stationary stochastic process (E,). Then the un­
known solution is a stationary stochastic process, denoted by 
(x,). If (E,) is a Gaussian process, (x,) is obviously Gaussian 
also and the problem is a trivial one. 

We consider here the case where (E,) is not Gaussian, 
but results from a quadratic transform of a Gaussian process 
which possesses a priori anyone covariance operator. This 
problem cannot thus be reduced to a Markov case, and fur­
thermore, the techniques of differential stochastic equations 
and of diffusion, leading, e.g., to a Fokker-Planck equation, 
do not apply. Prior to analyzing the general nonlinear trans­
formation under consideration, let us give two particular ex­
ample pertaining to the general case. 

First example: Excitation (E,) is written as 

E, = L (pl1yi(t,u) + q.(u)y.(t,u) + r(u» du (2) 

with tER; u = (U.,U2,U 3)EDCR3
; du = du. dU2 du 3; q. and r 

given mappings: D-R;Pl1 a given real constant and where 
y.(t,u) is a stochastic Gaussian process denoted by (Y.,u),u 
with zero mean and stationary in time t. This model corre­
sponds, for instance, to the effect of atmospheric turbulence 
on a deformable structure where the interaction of the fluid 
and the structure is ignored.·,2 

Second example: This excitation is now a function of the 
unknown (x,) and is written as 

E, = V [E}'.(t ) - x(t)f + V'[Ey.(t) - x(t)] + d, (3) 

with v'ER + *; v,r'ER"'; E a small real parameter and where 
y.(t) is a stochastic Gaussian process denoted by (v.,), with 
zero mean and stationary in time t. This model corresponds 
to the same problem as in the first example, but taking the 
fluid-structure interaction into account.2 The perturbed so­
lution in E of (1) and (3), restricted to the second-order: 
x.(t) = EX.(t) + cx2(t) is sought for. All calculations be­
ing completed, it is found that x. is the solution of 

2 

ax.(t) + b'X.(t) + cx.(t) = I Pjj' y/t)yj'(t) 
jJ' ~ 1 

2 

+ I qj y/t) + r, (4) 
j~ • 

where b' = b + V"Y2(t) = x.(t );Pl1 = P22 = cv; 
P.2 = P2. = - E2V; q. = EV'; q2 = 0; r = Er'; and wherex. is 
the stochastic solution of: 
ax.(t) + b 'x.(t) + cx.(t) = v'y.(t) + r'. 

In the following consideration, our attention will be fo­
cused on a constructive method enabling the numerical cal­
culation of some quantities related to trajectories of the pro­
cess (x,). This is useful for the vibration analysis of systems. 
These quantities are 

(i) The probability D (a,a') such that: 

D (a,a') = Prob(x, <a,x, <a') 

= f: 00 f:' 00 w(a,b) da db, (5) 

where w is the density of the joint distribution of x, and x,, 
which is independent of t because (x,) and (x,) are stationary 
processes. 

(ii) The mean N+(a,T) = :5'[N+(a,T)] of the random 
variable N +(a,T) which represents the number of up crossing 
of the level aER by the trajectory of the (x,) stationary pro­
cess, in time T(Tbeing a bounded interval ofR). Using a 
classical result of Ref. 3, if :5' (x;) < 00, we have: 

N+(a,T) = T i + 00 bw(a,b) db (6) 

(iii) The probability distribution G of the extreme posi­
tive values of the random variableXmax = max,ET(x,). We 
suppose that for the high values flER+ of X max' the sequence 
of instants of reaching level fl by increasing values, tends to 
become a Poisson process with a rate equal to 
T X [N+(a,T)] -I. Hence, for fl- + 00 

G(fl) = prob(max (x,)<fl)=exp( - N+(a,T») 
'ET 

and the mean Xmax = W(Xmax) is simply obtained by the 
expression 

f + 00 

Xmax = Jo fl dG (fl)· 

(7) 

(8) 
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One should note that the validity of Poisson assumption for 
the Gaussian case is proved by the Volkonsky-Rozanov's 
theorem.4 Here, (x,) is not Gaussian and there is no result at 
the present time concerning this point. Nevertheless, we 
shall maintain this assumption, which seems to be physically 
correct. 

Finally, we see that the effective computation of(5), (6), 
(7), and (8) requires us to determine the probability measure 
W = w(a,b) da db, (x"x,) not being a Markov process. For 
this purpose we shall use a functional approach using the 
notion of measures on vector spaces. 

It is nevertheless necessary to being with the definition 
of the various transformations between the known process 
( Y s ) and the process (x, ) which will be further under consid­
erations. The two examples which we have already given are 
particular cases of the transformations hereafter. 

2. TRANSFORMATIONS UNDER CONSIDERATION 

Let S be a set of the space Rn + t, with nEN; the generat­
ingpointofSisdenotedbys = (t',ut, ... ,un) = (t',u);ifn = 0, 
then s = t '. We shall denote by C (S,R m) the set of all Rm_ 
valued continuous functions defined on S with mEN*. For 
m = 1, we shall simply write C (S). 

(i) The probabilistic data of the problem is an m-dimen­
sional, real stochastic process on S: (Ys) = (Yts, ... ,ymJ 
which is assumed to be Gaussian, with zero mean, stationary 
in time t' and its trajectories are almost surely (a.s) continu­
ouson S. 

(ii) The process (yJ is transformed into a one-dimen­
sional real stochastic process (zs) = (f(y,» on Sby a non­
linear mappingf C (S,R m)---+c (S) such that 'fIyEC (S,R m) 

m 

y(s)_z(s) = (fy)(s) = L Pi/Yj(s) Yj' (s) 
jJ'~ t 

+ f qj(s) Yj(s) + r(s), (9) 
j~t 

where (Yt,. .. ,Ym) are the coordinates ofy on the canonical 
basis I b t,b2, .. ·,bm) ofRm; PiJ" is the component on bj ® bj" of 
a symmetrical tensor pERm ® Rm, qj is the component on bj 
of qEC (S,R m); and rEC (S). The quantities p, q, r are deter­
ministic and known. It is assumed that for any fixed uER n, 

r(t ',u)andq(t ',u) are independent with regard tot' and thatr 
is such that Zs = f(y.) has a zero mean. 

(iii) We consider lastly a linear filter with input (zs) and 
output the two-dimensional real process (x,,xJ on R2. For 
any fixed time t or R, this filter is defined by a linear operator 
p,:C (S)---+R2. Then, (x"x,) = P,(zs) and for any ZEC (S),P, 
is such that 

(x(t ),x(t» = P,(z) = Us z(s) dfLt(t,s), Is z(s) dfL2(t,s»). (10) 

where fL t(t,.) andfL2(t,.) are real-valued measures with com­
pact support onS, such that for iE11,2 J, dut(t,s) = gi(t,S) ds, 
the density s-gi(t,s) being a null function outside the com­
pact subset K, of S and continuous on K,. It is assumed 
besides that fLt andfL2 are such that (x,,x,) is stationary and 
has a zero mean. Then for the first example, S = RXD, 
n = 3, m = 1, Eqs. [(1) and (2)] let x, = S;_ eh (t - t ') 
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XS D(fyt)(t ',u) dt' du, 
X, = S: _ eli (t - t ')S D(fy\){t\,u) dt' du, where t_h (t), is 
the restriction to R+ of the impulsional response of (1), and 
where BER+ is such that from numerical point of view, the 
integration interval ( - 00 ,t ) is replaced by the finite interval 
(t - B,t), the system being damped. We are then led to the 
formulation (10) by putting K, = [t - B,t] XD; 
gt(t,s) = h (t - t ') and g2(t,s) = Ii (t - t ') if sEK,; 
g\(t,s) = git,s) = 0 and if stK,. In the same way, a similar 
formulation will be obtained for the second example. 

(iv) We now have the following scheme 

J P, 
C (S,Rm)---+ C (S)---+ R2 

(Ys)s-(zs) = (fCYJ).-(x"xJ =P,(zs)' 

Here we are calculating explicitly the probability measure 
W = w(a,b) da db of the random variable (x,,x,) 
= p, [lCYs)]' CYs) being the process which is defined in (i) 

above. W has a zero mean and is independent of the time t. 

3. CONSTRUCTIVE METHOD USING MEASURES ON 
VECTOR SPACES 

We know that a random variable with values in the 
finite-dimensional vector space E = R n is represented by a 
probability measure P on Rn e.5l.uipped with the Borel O'-field, 
or, by the Fourier transform P of P defined on the dual space 

A 

E',....,R nof E and which is written: 'fIvEE', P(v) 
= S yEE exp( - i ( y,v) ) dP (Y), where (.,.) is the bilinear 

form E X E '-R defining the duality between E and E '. The 
functional method of analysis of a stochastic process consists 
in applying the same scheme, but space E will be the space of 
trajectories of the process which will generally be a space of 
functions or distributions.5 Thus, to represent a stochastic 
process (y s) by a probability measure P on its space oftrajec­
tory E equipped with an adequate O'-field, means that "the 
trajectories of (Ys) are extracted randomly from E according 
to the probability law P " . 

Let suppose E be a locally convex Hausdorff space6 and 
let be E' its topological dual. The Fourier transform of the 
probability measure P on E equipped with the Borel O'-field 
is given by 

'fIvEE', P(v) = f exp( - i( y,v» dP(y). (11) 
JyEE 

For rEE, let us denote by P the probability measure on E 
deduced from the probability measure Po on E, by the trans­
lation of intensity r. Then the Fourier transform of Pis given 
by 

A A 

VvEE', P(v) = exp( - i(r,v)Po(v). (12) 

Let Fbe another locally convex Hausdorff space equipped 
with the Borel O'-field and let F' be the topological dual. Let 
I:E_Fbe a continuous and measurable mapping. Then the 
Fourier transform of Q = I (P) is 

'fIvEF' , Q(v) = i exp(-i(z,v»dQ(z) 
ZEF 

= f exp(-i(l(y),v»dP(y). (13) 
JyEE 
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"'- "'-
In particular, if / is a linear map, Q (v) = P (/ 'v), where 
/ ':F' __ E I is the transposed mappingofl. Iflis nonlinear, the 
calculation of (13) becomes much more difficult. 

A. Appllcat~n to the calculation of the Fourier 
transform W of the probability measure W defined In 
Sec.2(lv) 

We shall need the continuity and measurability proper­
ties ofthe mappingsfandp, defined respectively by (9) and 
(10). The spaces E = C (S,R m), F = C (S), and R2 are thus 
equipped with the Borel a-field and with the topology of the 
compact convergence; their topological dual is denoted by 
E I = M (S,R m)andF I = M (S), whereE I andF I arethesetof 
Rm-valued and R-valued measures, respectively, with com­
pact support on S. This topology is defined by the semi­
normsPK,:tp--++PK,(tp) = sUP)'EK, Itp (y)I, with i describing the 
family of compact subsets Kiof S. Then,fE--F and 
p, :F __ R2 are continuous and are measurable. 

The process ( y s ) (defined in Sec. 2(i) defines a Gaussian 
probability measure Po on E, centered and invariant for tem­
poral translation;fE--Fbeing continuous and measurable, 
ftransforms Po according to the probability measure 
Q = f(Po) on F which represents the probability law of the 
process (zs) = f(ys)' In the same way, p, transforms Q ac­
cording to the probability measure W = p, (Q) = (f3,of)(Po) 
on R2. Wis the probability measure defined in Sec. 2(iv). To 
determine W, we shall decompose the nonlinear mapping! 

Let thus E0E be the vector subspace of the symmetri­
cal tensors of E ® E. Introduce the nonlinear mapping 
B:E--+(E0E) X E such that 

VyEE,y-+B(y) = (y®y,y), (14) 

and the linear mapping A :(E0E) X E--F such that Vy 

® yEE0E, V hEE, 

«y ® y)(s,s'),h (s»-1:;:;' = 1 Pi/ y/s) y/ (s) + f q/s)hj(s). 

By taking into account (9),fis written 

VyEE,y-f(y) = (AoB)(y) + r. 

j=! 

(15) 

(16) 

We shall need a locally convex Hausdorff topology on E0E 
such that A and B be continuous. For this purpose, we shall 
use the topologies E and rr on tensor products.7 Both topolo­
gies are defined hereafter. 

The topology of E being defined by a family of semi­
norms (P)jEJ' for eachjEJ the following semi-norms are de­
fined on E®E 

tp __ rrj(tp) = inf{~P/tl.dPj(Vk) with tp = ~tl.k ®vk } 

tp~j(tp) = sup{1 (tp,A. , ® v') 1 with tl. 'EVY, V/EVY} , 

where VJ specifies the absolute polar set of 
~ = I xEE; Pj(x) < I). The topology rr (resp. E) on E ® E is 
then defined by the semi-norms (rr)jEJ' (resp. (E)jEJ)' E0Eis 
equipped with the induced topology by each of the two topo­
logies, noted by E01TE and E0EE respectively. 

Then, the mappings B:E--+(E0EE)XE and 
A:(E8.E)XE--F are continuous and measurable for the 
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Borel a-fields. By taking into account (16), the probability 
measure Q = f(P 0) onFis deduced from the probability mea­
sure AoB (Po) on Fby the translation of intensity reF. We 
write formally 

Q=AoB(Po)+r. (17) 

The mappings A and p, being linear and transposable, and 
considering (11), (12), and (13) we obtain 

"'- "'-
W(a',b ') = Q (p ;(a',b '», (18) 

wherep ;:R2_F' is the continuous transposed ofP .. and Q 
the Fourier transform of Q which is given by 

"'-
V/LeE /, Q(/L) = exp( - i(r,J.L»XB(Po)(A '(/L», 

(19) 

whereA ':F'--+(E'0E ')XE ' C(E0EE)' XE'isthecontinu­
ous transposed mapping of A. There is no difficulty in deter­
miningp; andA '; as a consequen~ only remains for us to 
determine the Fourier transform B (Po)(tl. ) of probability 
B (Po) for any tl.E(E '0E') XE'. We shall do so in the next 
section, by considering a general case. 

/'.. 
4. EXPLICIT EXPRESSION OF B(P) 

Let E be a locally convex Hausdorff space equipped 
with the Borel a-field. We suppose always that any bounded 
and closed subset of E is complete (quasi-complete space), 
and we shall consider only a probability measure Po having 
the following regularity property: For any Borel subset fiJ of 
E, VE, 3 acompactKCfiJ:Po(P\.K)<E. This probability 
measure is sometimes called Radon measure; in particular, 
any measure on the a-field of a separable metrizable com­
plete space is a Radon measure. Then in order to do easy 
computation, we need, instead of E, a Hilbert space called 
"the reproducing Hilbert space of E ". 

Theorem 1: Let Po be a centered Radon probability 
measure on a Borel a-field of a quasi-complete real locally 
convex Hausdorff space E, such that for any continuous 
semi-norm P on E 

(20) 

Then there exists a linear continuous operator Co:E ' __ E 
called the covariance operator of Po such that 

VU,vEE', (Cou,v) = f (x,u) (x,v) dPo(x). (21) 
JXEE 

Proof VuEE', the mapping x_(x,u)x is continuous. 

Then, for any compact subset K of E, the weak integral I K (u) 
= f K (x,u)x dPo(x) is defines as an element of E. Hence, if 

K describes the set % of all compact subsets of E, all IK(u) 
belongs to a bounded set of E. Let us introduce on % the 
filter with basis (BK ) whereBK = IK'E%, K':JK). Then it 
can be shown that (h(u» is the basis of a Cauchy filter on 
liK. But liK is complete; hence the limit exists. Denoting this 
limit as Cou, we obtain expression (21). 

By definition, a Hilbertian subspace of E is a pair (HJ), 
where H is a Hilbert space, andj is a linear continuous injec­
tion of H into E. 

Corollary: With the notations of Theorem I, there exists 
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a Hilbertian subspace H of E such that Co = jpj', where 
j':E I_H I is the transposed mapping ofj, and wherep-t is the 
Riess isomophism of H into its dual H I. This Hilbert spaceH 
is called the reproducing Hilbert space of E. 

Proof Co is symmetric and positive. Hence the bilinear 
map 

[Cou,Cov] = (Cou,v). (22) 

is a scalar product on the subspace ImCo of E. The injection 
jc ofImCo into E is continuous for the weak topology because 
if (xnk--+O in ImCo' then [xn'COv] = (xn,v)-o. He~ 
admits a continuous extensionj of the completion H = m 0 

of ImCo to E I •• In fact, ImjCE because any Cauchy se­
quence in ImCo is a Cauchy sequence in the weak space E 
and is bounded in E. j is injective because of the continuity of 
Eq. (22). By an argument of topology,j is continuous for the 
strong topology. We have VxeH, VveE ' , [x,Cov] = (jx,v). 
Taking in particular x =pj'(u) with ueE ' , we obtain 
(jpj'(u),v) = [pj'(u),Cov] = (j'u,Cov) H'xH 
= (uJCov) = (u,Cov); hencejpj' = Co. 

Remarks: 1) If Co is injective, thenj' is injective; 2) if Po 
is a Gaussian measure and if E is a Banach space, this corol­
lary gives the result of Ref. 8; 3) if E is metrizable, it may be 
proved as in the Banach case that the reproducing Hilbert 
space H is separable; 4) if Po is a Gaussian measure, the 
condition (20) is automatically satisfied by the integrability 
theorem of X. Fernique.9 

/"'-.... 

Let us apply this result to determine B (P), where B is 
the nonlinear mapping as previously defined, and where P 
denotes the Gaussian probability measure on E, deduced 
from the centered Gaussian probability measure Po on E by 
the translation of intensity jm H' for any m HeH. The covar­
iance operator Co of P is given by (21). The continuous injec­
tionj maps H into E, hence the map k = (j ®jJ) is continu­
ous and maps (H8£H) X H into G = (E0£E),,« E. But H 
being an Hilbert space, the dual of H8£H is H81TH, where 
we have identified H with its dual. Hence the)ransposed 
mapping k I = (j' ® j') Xj' of k maps G ' on (H81TH) X H; we 
have the following scheme: 

B 

(H8£H)XH - G = (E8£E)XE-E 
k~(j .. jJ) 

Let T:G I -L t(E,P) be the linear mapping such that V g' EG " 
T(g') = ~,y),g/). Then, Vg/EG ' , the Fourier transform 
ofB (P)isB (P)(g') = ~ {exp[ - iT (g')] }. Underthesecondi­
tions, we have the following theorem. 

Theorem 2: Under the previous and notations, the 
Fourier transform B (P) of probability measure B (P) is the 
uniformly continuous function on G I which is written for 
any g' of(E I8E')XE ' : 

B (P )(g') = l/J (k 'g), (23) 

with l/J being the continuous function defined on 
/'. "" 

(H81TH XH such that V(OH#H)E(H81TH)XH 

l/J(OH#H) = {det(1 +2iOH)}-t/2 

Xexp{ - !(mH,mH)H - !«(1 + 2iOH)-t 
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(24) 

where i = V-I, det(1 + 2iOH) is the Fredholm determi­
nanttOoftheelementOHeH01TH at the point 2i, ("')w the 
scalar product on the complexified space H C = H + iH of H 
such that (Xt,x2)W = (X t,x2)H' 

Proof LetR :H_L 2(E,P) be the continuous linear map­
ping such that VVEE I, R (j'V) = (y,v). Let b be the bilinear 
symmetrical mapping of H XH in L t(E,P) such that 
ut,u2-Rut, Ru2. Taking into account the universal proper­
ty of the symmetrical tensor product, b is factorized by the 
linear mapping b: H0H-L t(~P) denoted by R0R. Be­
cause b is continuous, R0R:H81TH -L t(E,P) is continu-

/'. 

ous. Hence the lin~ar mapping S:(H81TH) X H -L I (E,P ) 
such that VOHeH81TH, Vf.lHH: S(OH,p.H) = (R0R )(OH) 
+ R Vt H) is continuous. A simple calculation shows that for 
Vg/E(E '8E ') XE I C G I, T(g') = (Sok ')( g/). BecauseSand 
k I are continuous, T is continuous and thus, the Fourier 
~orm1t(Pj is continuous also and is such that 

11 (Pj(g/) = l/J (k '()with l/J(u) = ~ {exp[ - is(u)]} , which is 
continuous on (H81TH)XH. Let us now determine l/J. We 
begin by assuming that OHeH0H. Let Hq be a subspace of 
finite dimension of H, generated by the orthonormal basis 
{e l , ... ,eq } of dimension q and such that OHeHq0Hq and 
f.lHeHq. An orthonormal basis of Hq0Hq is 

ek8ep 

(25) 

Decomposing 0 H on the basis defined by (25) and f.l H on the 
basis {ek J, we obtain OH = ~k <p 0 tpek8ep with 0 tp = Okp 
if k = p and 0 tp = 1/20kp if k <p, the Okp being such that 
OH = ~k,pOkpek ®ep, andf.lH = ~kf.lkek withf.lk 
= (p,H,ek ) H' The restriction of R8R (resp. R ) to subspace 

Hq0Hq (resp.Hq) is decomposed by the random variable 
x ®x (resp. x) valued in Hq0Hq (resp. Hq). Hence we have 
(R0R)(OH) = (X®X,OH)H andRVtH) = (X,p.H)H' Then 
Vu = (OH,p.H)E(Hq0Hq)XHq, we obtain 

l/J (OH,f.lH) = ~ [exp( - i{ (ex,x) + (~,x) }], (26) 

with e being the symmetrical real square matrix (q xq) of 
element e kp = Okp' '~ = Vtt,. .. ,p.q) and IX = (xw .. ,xq) 
where Xk = (x,ek ) H' Let H! be the orthogonal of Hq into 
H. Then the restriction of p to Hq is the identity mapping of 
Hq intoHIH!c:::d/q. Takingmk = (mH,ek)H and 
'm = (m1, ... ,mq ), (26) can be written as follows: 

l/J (OH,p.H) = f (217') ~ q/2 exp{ - i( (ex,x) + (~,x» JRq 
- ! (x - m,x - m) } dx, 

with dx = dx t X ... X dXq • Grouping the terms and denoting 
Iq as the unity matrix (qXq) we obtain 

l/J (OH,p.H) = {det[Iq + 2ie ] }-lt2 exp{ - !(m,m) 

- !([Iq +2ie ]-t( ~ + im),~ + im)} 

As a consequence, VOHeH0H and Vf.lHeH, we obtain in 
the limit 
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<P(OH,f1H) = [det(1 +2iOH)I-1/2 

xexp! - !(mH,mH ) H - !«(1 + 2iOll t i 

x (f1H + imH ),f1H - imH ) H' I (27) 

Recallin~ that <P is continuous and as a consequence 
't/OHElJ8"H and 't/f1HElJ. <Pis given by (27) and is obtained 
by continuous extension. For fixed A 0,( C, the mapping 
OIl-+det(1 + AOH) is continuous of H8"H in C (see Ref. 
10); thus the exponential term of (27) is continuous. Finally, 
since1f(P) is continuous on (E '8E') XE', it is uniformly 
continuous and according to a theorem of topology, it ex­
tends by continuity to the closure of (E '8E ') X E ' in G' 

5. EXPLICIT EXPRESSION OF W 
Let u~pply the results of Sec. 4 for the explicit determi­

nation of W defined by (18) and (19). The probability mea­
sure Po on the Borel a-field of E = C (S,R m) defined by the 
process (Ys), is Gaussian with zero mean, and satisfies the 
regular property and condition (20). On the other hand, we 
assume henceforth that the covariance operator Co of Po is 
injective. Taking into account (21) 't/f1 = L;: 1f1)}jEE' and 

't/v = Lj'= 1 vjlbjEE', we obtain 

where (s,s')-+Ry(s,s') = LjJ ~ 1 Rjj' (s,s')lbj ® lbj" is the auto­
correlation function defined on S X S with values in Rm8Rm 
of the process (y,). We have Rjj' (s,s') = '$ [y/s)Yj' (s')] and 
since (Ys) is time stationary we obtain for any s = (t ',u) and 
s' = (t" ,u') of s, Ry(s,s') = Ry(t' - t" ,u,u'). Considering 
(18) and (19), it is enough to determinef3; and A ' and use 
(23) and (24) by putting m H = 0, Po being centered. After 
completing the calculating, we obtain 

witha'f11 + b 'f12EF; = M(S),f1landf12themeasuresdefined 
in (10), and where Qis the Fourier transform of the probabil­
ity measure Q = f(Po). We have for any f1 of F': 

Q (f1) = [det[ 1 + 2i(j' ®j')(,U) ]1-1/2exp [ - i( f1,r) - ! 
< [1 + 2i(j' ®j')(,U)]-1 j'(q'f1)J(q'f1» H' I, (30) 

where fiEE '8E' and is such that 't/s,s'ES, fi(s,s') = p. 
(f1(s) ®8,(s'» withp, q, r as defined in Sec. 2 and 8, the 
Dirac measure at point s of S. 

6. THE APPROXIMATION PROCEDURE 

In its actual form, expression (30) cannot be calculated 
numerically because it involves operators acting on space of 
infiite dimension. Let (f3v)v be a sequence of L [C (S),R2],f3v 
having a finite rank. For all (a,b )ER2, f3,,(a,b )-+f3,(a,b) if 
V-+ 00 • An approximation of W = ( f3, of) = (Po) is given by 
Jfv = (f3v of)f!o) = f3v (Q) and then, 't/(a' ,b ')ER2, 
Wv(a',b') = Q [f3 ~(a',b')], By the dominant convergence 

~ ~ ~ 

theorem, we obtain W,,(a',b ')-+W(a',b ')ifv-oo. Then, W" 
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can be numerically calculated since f3 ~ (a' ,b ') belongs to a 
finite-dimensional subspace of M (S). We now apply this ap­
proximation procedure. Taking into account point C of 
Sec. 2, (10) can be written: 

f3,(z) = (l,Z(S)gl(t,S)dS, l,Z(S)gz{t,S)dS} (31) 

The compact subset K, of Sis discretized in v subsets ..:1sk, 
kE[ l,v I. The center of ..:1sk is the point Sk of K,. If V-+oo, 
maxk l..:1sk 1-0. For any ZEC(S) we define 

f3v(z) = [ktl VkZ(Sk), ktl VkZ(Sk)]. (32) 

with Vk =gl(t,sk)l..:1sk I, vk =gz{t,sk)l..:1sk I. It can be easily 
shown thatf3Jz)-+f3,(z) when V-+oo and that 't/(a',b ')ER2, 
f3 ;. (a' ,b') = Lk ~ 1 (a'vk + b 'v k )8s, , where 8" is the Dirac 
measuJ.e at the point Sk of K, CS. It remains only to deter­
mine Q (f1) given by the equation (30), with f1 in form of 
f1 = Lk ~ lf1k8s,. The following result is then obtained for 
fixed v> 1 and 't/a' = (a',b ')ER2 

W,,(a') = !det[Iq +2iLi§(a'YL ]1-1/2 

Xexp! - ie(a') - r [LN(a')] 

X [Iq +2iLi§(a')'L ]-ILN(a')J, (33) 

with: 

q = v X m and Iq the real unity matrix (q X q); (34) 

L: the real triangular matrix (qxq) and 'L the transposed 
matrix such that Cq = 'LL, where Cq is the real square ma­
trix (qxq), symmetrical and positive definite and! Cq Ipp 
= (Coep,ep')' Co is the covariance operator defined by (28) 

and 

(36) 

(37) 

i§ (a') the symmetrical real square matrix (q X q) of element 
[i§ (a') Ipp = f1kk' (a') Pjj' such that p = (k,j); p'(k ',j'); 

p,p'E[ l,q j; k,k 'E[ l,v j;j,j'E[ I,m j; 

';;' _Oifki=k'and';;' (a')-II ifk=k'. (38) 
r-kk' - r-kk - r-k 

N (a') = the column matrix of dimension q of element 
[N(a')l p =qj(Sk)f1k such that 

p = (k,)) (39) 

If Ry:S xS-+Rm8Rm is continuous, then (Coep,ep') 

= Rjj' (Sk h') with p = (k,)), 

p' = (k ',j'), Rjj" being defined in (28) (40) 

Remark 1: In order to obtain the result (33), we must 
demonstrate that 't/ OEE '8E ' C (E8. E)' and denoting {} as 
the continuous linear operator of E in E' canonically associ­
ated with OJ {}jp is the continuous linear 0Rerator of H in H 
canonically associated with (j' ®j')(O )ElJ8"H. Denoting 
M 8 (S) as the space of finite linear combinations of Dirac 
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measures on S generated by the basis {~Sl , ... ,~.ttJ, we obtain 
the result by adopting the finite dimension su6~pace 
Hq = M{j (S) ® Rm and E ' = M (S,R m), the basis of Hq being 
{ep =~Sk ®bj j,kE{1,vj,jE{1,mj andpE{1,qj wherep is the 
index associated to the pair of indices (k,}J. 

Remark 2: We should note that another basis could be 
used for Hq which would be the eigenfunctions of the covar­
iance operator Co of the process (Ys), Thus let,utp 
= qJ (s) dsEM (S,R m), qJ (s)=O if sEK, CS. The eigenfunc­

tions of Co are solutions ofqJ (s) = A (CfIltp)(S),sE/(" where A 
is the characteristic number associated with qJ. Using equa­
tion (28), qJ (s) = l:}: I qJis)bj is the solution of 

qJ (s) = A ( . ~ Rj/ (s,s')qJ/s')bj ds', sE/(, (41) 
JKolJ ~ I 

The kernel Ry is symmetrical, real, and positive definite on 
K, XK, (because Co is injective), alIA 1..4 2," are strictly posi­
tive, and the associated eigenfunctions qJ <1 >,qJ (2" ••• form an 
orthonormal basis of L 2(K, ,R m). We have (qJ (P),qJ (pO» 
= ~ppo with ~ppo the Kronecker symbol. Then the orthonor­

mal basis {e; j of Hq is such that e; = ,utp'P'; thus e; 
= qJ (P)(s) ds if sE/(, and e; = 0 if sEK,; we have 
(Coe;,e;J = ~ppoAp. Under these conditions, expression 
(33) for Wv as well as (34), (35), (36), and (37) are un­
changed, but (38), (39), and (40) must be replaced by Eqs. 
(42), (43), and (44) respectively. 

{e(a')}ppo = (p ktl,uk~Sk ®~s" e; ®e;-) 

m v 
- ~ p ~ (p){) (pO)( ) 
- £.., jjO £.., ,ukqJ j \Sk qJ]" Sk' 

jJO ~ I k~ I 

{N(a')}p = (ktljtl qj(Sk),ukDs, ®bj,e;) 

= i I q/Sk),uk qJ?)(Sk), 
k~ I j~ I 

(42) 

(43) 

(44) 

However, generally there is no analytical solution for Eqs. 
(41) and furthermore, from a numerical point of view, the 
intergation with respect toK, CS = Rn + I is a (n + I)-tuple 
integral. 

Remark 3: Expression (33) therefore enables a numeri­
cal calculation of an approximation of v-order of the prob­
ability density w. We shall denote by WI the probability den­
sity of the law of the random variablext • Approximations of 
v-orde~will be denoted by Wv and Wlv respectively. Since we 
know Wv given by (33) for any (a' ,b ') ofR2

, we obtain for any 
(a,b) ofR2

: 

1 f+oo ,A. 

wlv(a) = - exp(iaa') Wv (a',O) da', 
21T - 00 

(45) 

1 J+ooJ+oo 
Wv (a,b ) = (21T)2 _ 00 _ 00 exp [i(aa' + bb ')] 

X Wv(a',b') da' db'. (46) 

A direct numerical integration of (45) and (46) can be con­
sidered, but it leads to very complicated calculations because 
using expression (33) for Wv , it will be necessary to compute 
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a very large number of inversions of complex non-Hermitian 
matrices of order v. We have therefore worked out expres­
sions much more rapidly computed, which allow us to solve 
a restricted number of eigenvalue problems of a real symem­
trical matrix. We shall not give the proof which is lengthy 
but not difficult. 2 Let L be the matrix defined in (35). For 
OE[0,21T], we define the real matrices (qxq):U(O), V(O), 
1/1(0) and fl (0) such that q = vXm; {U(O)}ppo 
= ~kko(Vk cosO + Uk sinO) Pj/' V(O) = 2LU(0) 'L; 1/1(0) the 

matrix of eigenvectors and fl (0) the diagonal matrix of ei­
genvalues of V (0). In that case, for q > 4, we have for any a 
and b ofR 

1 i+ 00 wlv(a) = - ylp,O) COS(YI(P,O) + pa) 
1T 0 

X exp[ - Y3(P,0)] dp, (47) 

1 (1T(+00 
wv(a,b) = 2(1T)2 Jo Jo PY2(P,0) COS(YI(P,O) 

+p(a cosO + b sinO» exp[ - Y3(P,0)] dp dO. 
(48) 

with: 

YI(P,O) = - ~ f arctan[pflpp(O)] -pe(O) 
p~l 

+ ~ p3'JI)(0)1/I (0 )[Iq + p2fl 2(0)] - 1'1/1 (0) 

X V(O)D(O), 

Y2(P,0)= IT [1+p2fl;p(0)]-1!\ 
p~1 

Y3(P,0) = yl'D(O)1/I (0) [Iq + p2fl 2(0) ]-1' 1/1 (0 )D(O), 

whereD(O) = LN(O), whosepth element of the column ma­
trix N(O) of dimension q is {N (O)}p = qj(Sk)(Vk cosO 
+ Uk sinO) e( 0) is the element of R such that 
e(O)=l:k~Ir(Sk)(Vk cosO +uk sinO). The expression of 
Wv thus allows a numerical computation of (5), (6), (7), and 
(8). Nevertheless, the direct numerical computation of (8), 
can be very difficult. We shall thus given an approximate 
expression for Xmax in analytical form which leads to reason­
ably rapid numerical computations. 

7. MEAN OF POSITIVE EXTREME VALUES OF THE 
PROCESS (XI) 

Let Mpq be the moment of order (p,q) of the random 
variables x, and i,; ';/p>O, ';/q>O, we have 

Mpq = I&'(x~in. (49) 

Then the mean of the positive extreme values Xmax of the 
stationary centered process (x,) over the time Tis given by 
the following proposition: 

Proposition: Assuming the hypothesis (7) and taking the 
Hermite polynomial expansion restricted to the 4th order of 
w, a numerical approximation X :ax of Xmax is given by 

X ;"ax = gM i~2, 

g = (21nvN T)I/2 + (21nvn T)-1!2 [y + In(l + qJ )], 

with Y = 0.577··· the Euler constant, 

Christian Soize 
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4 

Vn =(21T)-IM~~2M20112;tp= I a/21nvNTY/2 
j=O 

ao = rt..3M4oM 20 2 - 6M22 M 20 1M 02 I - M04M 02 2) 

l(M M - 112M -I M U -3/2) a l = 2 12 20 02 - 30"~ 20 

a2=l(M22Mi.f/M021 -M4oM20 2 +2) 

a3 = iM30M 20 3/2 

Comments: 

(51) 

(l) We shall not give here the very long and much com­
plicated proof; the interested reader is referred to Ref. 2. The 
principal of this proof consists in developing in Hermite 
polynomials the probability density W R of the joint law of the 
normalized random variables X R = M 20 1/2 x, and 
i R = M 021/2 x,. We obtain to the 4th order W R (1],5") dry d5" 
= a(1])a(S)[1 + :t;,q= ICpqHp(1])Hq(S)] d1] d5", with 

a(x) = (21Ttl/2 exp( - x 2/2); dPa(x)/dxP 

= ( - 1) PHp(x) a(x) and where the coefficients cpq are ex­
pressed as functions of the cumulant kpq . 

(2) If the transformationJofthe problem under consid­
eration were linear, then the processes (x,) and (x,) would be 
Gaussian; under these conditions, we should have the classi­
cal expressiong = (2InvNT)1t2 + r(2InvNTtl/2. 
Here,Jis nonlinear and as a consequence, the term 
(2InvNTtl/2In(s + tp) of (50) occurs as a corrective term of 
the linear case because the process (x,) is not Gaussian: 

(3) Lastly, one should note that using (50) requires the 
determination of the moments Mpq, p,qE 11,4 J. Although it 
is possible to proceed without greatly difficulty to an analyt­
ical calculation of M 20 and M 02' the direct analytical deter­
mination without using W of the other moments may be im­
possible. We shall therefore calculate the aRProximate 
moments M;q from the approximation for Wv given by (33). 
Using the approximation procedure it is obvious that 
M;q-Mpq whenv-oo. Valuesc/0)forjEll,4J are defined 
such that VOE[0,21T] 

cl(O) = ~Tr[JJ (0)] + e(O) = Tr[U(O)Cq] + e(O), 

ciO) = 'D(O )D(O) + ~ Tr[JJ 2(0)] 

= 'N(O)CqN(O) +2 Tr([(U(0)Cq)2]), 
'52) 

FIG. I. 
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C3(0) = 'D(O)V(O)D(O) + 1 Tr[JJ 3(0)] 

= 2'N(0)Cq U(O)CqN(O) + J Tr([U(O)Cq P), 

ciO) = 'D(0)V2(0)D(0) + l Tr[JJ 4(0)] 

= 4'N(0)Cq [U(O)Cq ]2N(0) +4 Tr([U(O)Cq ]4). 

where Cq is defined in (35), U (0), N (0), e(O), JJ (0), D(O), 
V(O) are defined in Sec. 6, and Tr[.] is the trace of matrix [-]. 
Let XI(O), X2(0), X 3(0) be such that, VOE[0,21T] 

XI(O) = ci(O) + ciO), 

XiO) = ci (0) + 3c l(0)C2(0) + 3c3(0), (53) 

XiO) = ci(0)c2(0) + 6c~(0)C2(0) + 12c l(0)cJ:0) 

+ 3c~ (0) + 14c4(0). 

In that case, the approximation M;q of order v of the mo­
ments Mpq is2 

Mfo = cl(O); Mtl = CI(1T12); M!o = XI(O); 

Mt2 = XI (1T/2); 

M To = XiO); M:O = X3(0); M (\4 = X 3(1T/2); 

Mf2 = -1MTo + (v'2/3)[X2(1T/4) - Xi31T/4)], 

M!2 = (l/3)[X3(1T/4) +Xi31T/4)] 

- (l/6)[M:O + M(\4]. 

8. NUMERICAL EXAMPLE 

(54) 

Let (yJ be a centered Gaussian process on S = [0,1] 
with a given covariance function Ry(s,s') = If [y(s)y(s')] 
= r exp( - 1.065s -0.5Is - s'l) for s,>s'. The formula (47) 

can be applied to compute an approximation W lv of the den­
sity WI of the distribution of the R-valued random variables 
X 

X = f (y; + q(s)ys - r) g(s) ds. 

The results are represented by Figs. 1 and 2 and correspond 
to the following values of g, q and r: 

Fig. 1: g(s) = 6.086s, q(s) = 2.480s0.1 5, r = 0.02657. 

Fig. 2:g(s) = 1.823s, q(s)=3.305so.35 , r=0.19981. 
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9. CONCLUDING REMARKS 

The writer has developed a general computer program 
that permits the calculation of w 1"' W v given by (47) and (48), 
the various M;q moments given by (54), and X!a. given by 
(50). This computer program has been used to study the 
vibrations of structures due to effects of turbulent wind; the 
numerical and practical results obtained on this point have 
been published in Ref. 1. 

We have presented in this paper an approach which is 
constructive from a numerical point of view for solving sto­
chastic problems to which Markovian methods do not apply. 
This method is general and can be used for other kinds of 
stochastic problems. 
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Factorization of operators I. Miura transformations 
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(Received 27 December 1979; accepted for publication 15 February 1980) 

The method offactorization of operators, which has been used to derive the Miura transformation 
of the KdV equation, is here extended to some third-order scattering operators, and 
transformations between several fifth-order nonlinear evolution equations are derived. Further 
applications are discussed. 

1. INTRODUCTION 

It has been known for some timel
.
2 that the Miura 

transformation 3 

(1.1) 

(where Vn = [a n laxn]v), which relates solutions ofthe 
Korteweg-de Vries (KdV) and modified Korteweg-de Vries 
(MKdV) equations 

U, = u3 +6uu l 
(1.2) 

v, = V3 -6v2vl 

may be derived by factorizing the scattering operator for the 
KdV equation. From this factorization one may also derive 
Wadati's4 scattering problem for the MKdV equation, as 
will be shown below. 

In this paper we use this approach to investigate two 
fifth-order nonlinear evolution equations, deriving Miura 
transformations between them and a single "modified" 
equation, and a Lax pair of operators for the modified 
equation. 

The Hamiltonian structures of these equations are 
shown to be related by the Miura transformation, and this 
approach permits a verification of the validity of the Miura 
transformation which is simpler than the direct method. 

Of course, the original development of the inverse scat­
tering transform proceeded via a linearization of the Ricatti 
equation (1.1) to give the SchrOdinger operator.s We show 
here, however, that it is not always possible to proceed in this 
manner, the relationship between Miura transformations 
and scattering operators being more complicated in general. 

2. THE SCHRODINGER OPERATOR 

To illustrate the method of factorization we consider 
the operator 

L =a1 + u, 

where 

a=a = ~ 
x ax 

We require that this should be equal to 

L' = (a - v)(a + v). 

An elementary computation gives 

U = VI - v1
, 

which is the transformation discovered by Miura. 3 

(2.1) 

(2.2) 

(2.3) 

A. Hamiltonian structures 

To derive the transformed equation, we consider the 
Hamiltonian structure of the KdV equation.6 The equation 
possesses infinite sets, both of conserved quantities and of 
Poisson brackets 

lEG} =foo of II oG dx 
, n _ 00 ou n ou ' (2.4) 

where the skew adjoint operator 

lln = (a
1 

+4u +2u l f: Jna (2.5) 

is the "Poisson operator". The conserved quantities are in 
involution with respect to anyone of the lln. 

The KdV equation may be generated by the 
Hamiltonian 

R = f: 00 !u
2
dx 

and the Poisson operator III 

oR 
U, = lll- = U 3 +6uu j • ou 

(2.6) 

(2.7) 

Now v satisfies some Hamiltonian equation 

oK 
V, =llv &' (2.8) 

where the Poisson operator llv and the Hamiltonian K are to 
be determined. The natural construction for K is to express 
the Hamiltonian R in terms of V 

K [v] = R [VI - v2
] = f: 00 !(v~ + v4

) dx. (2.9) 

Now, quite generally, a Miura transformation of the form 

u=F[v] (2.10) 

implies 

u, = F'[v]v, 

= F'[v]llv ~~ 

=F'[v]llv(F'[v])tlu=F[v] 0;: 
-ll 8R 
- u 8u ' 

(2.11) 

where the operator F'(v] is the usual Frechet derivative of 
F[v]. 

For all the systems discussed in this paper, it is a re-
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markable fact that there exist differential operators IIu and 
IIv which are related in this fashion, for if we takeIIv as - a, 
then the Poisson operator IIu must be 

IIu = (a -2v)( - a)(a -2v)tlu=v, -v' 

= [& +4(vI - v2)a +2(V2 -2vvl ) ] I u= v, -v" 
(2.12) 

which is just the operator Ill' 
The relationship between the factorizations (2.2) and 

(2.12), of the scattering operator and the Poisson operator 
respectively, possibly deserves further investigation. Equa­
tion (2.8) now becomes 

(2.13) 

B. The eigenvalue problem 

The operator (2.2) gives rise to the second eigenvalue 
problem 

(a-v)(a +V)tf;={;2tf;. (2.14) 

where the matrix on the right may clearly be rewritten as a 
matrix of polynomials in (;, v, and its derivatives, which is 
often more convenient for applications. 

3. SOME THIRD ORDER OPERATORS 

Two fifth order nonlinear evolution equations which 
are of some interest are 

u, = Us +Suu3 +SU.U2 +SU2UI, (3.1a) 

w, = Ws + lOww3 +2Sw.w2 +20w2wl • (3.1b) 

The first of these is due to Sawada and Kotera7 and GibbonS 
while the second is due to Kupershmidt.9 They both have 
Lax representations 

L, = [L,G), 

M, = [M,K), 

where 

L =a 3+ua, 

and 

M=a 2+2wa +w., 

K= 9a s +30wa 3 +4Sw.a 2 

+ (20w2 +3S w2)a + (lOw3 +20 ww.). 

(3.2a) 

(3.2b) 

(3.3a) 

(3.3b) 

We factorize the scattering operators Land M as follows: 

L = (a - v)(a + v)a, (3.4a) 

M = (a + v)a(a - v), (3.4b) 

where the choice of the same notation, v, for the new varia­
bles in the two cases will be justified below. 

2509 J. Math. Phys., Vol. 21, No.1 O. October 1980 
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This may be decomposed into the pair of first-order 
equations 

(a + v)tf; = {;¢> 

(a - v)¢> = {;tf;. 
(2. IS) 

By introducing tf;+ = tf; + ¢> and tf;- = tf; - ¢>, we would get 

a (tf;+) = ({; v) (tf;+) , 
tf;- v - {; tf;-

(2.16) 

which is the Zakharov-Shabat eigenvalue problem, first in­
troduced in this context by Wadati. 4 The form (2.1S), how­
ever, is more convenient for the purpose of this paper. 

The time evolution of tf; is clearly given by 

tf;, = (4& + 6ua + 3uI)tf; 

= (4a3 + 6(vI - v2)a + 3(v 2 - 2vvI»tf;, (2.17) 

while that of ¢> is given by 

¢>, = [4a3 - 6(vI + v2)a - 3(V2 + 2vv.) ]¢>. 

Hence 

The Miura transformations are seen to be 

U = v. - v2 = P [v], 

w = - v. - !v2 = Q [v). 

(2.18) 

(2.19) 

(3.Sa) 

(3.Sb) 

The Poisson operators for the systems (3.la) and (3.lb) are 

IIu = a3 +4ua +2u l , 

IIw =a3+2wa+w •. 

(3.6a) 

(3.6b) 

They generate Eqs. (3.la) and (3.lb) from the Hamiltonians 

HG = f: 00 i(u
3 

- 3uD dx 

HK = f: 00 i(8w3 - 3wi) dx. 

(3.7a) 

(3.7b) 

Now the Poisson operators may be factorized, as in Sec. 2, 
giving 

IIu = (a - 2v)( - a)( - a - 2v) 

= (P')(IIv)(P')t, (3.8a) 

IIw = ( - a - v)( - a)(a - v) = (Q ')(IIv)(Q ')t. (3.8b) 

It may be observed that the transformed Poisson operator 
IIv is the same in both cases. The Hamiltonians H G and H K 

both transform into a single functional 

Hv = f: 00 - H3v~ + Svi + ISviv2 + v6
) dx. 

Hence the transformed equation is 

8Hv 
v, =II --

v 8v 

= ( - a)( - V4 + 5v.v2 + 5v vi + SV2V2 - Vs) 

(3.9) 

= Vs - 5(v.v3 + v~ + vi + 4vv.v2 + V
2

V3 - v4v.). (3.10) 

That the factorizations (3.4a) and (3.4b) lead to a single evo-
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evolution equation in v justifies the notation adopted in 
equations (3.4). The validity of the Miura transformations 
may be verified by direct substitution, but such a calculation 
is much more cumbersome than the method used here. 

A. The eigenvalue problem 

The system of three first-order equations 

(a - v)</J = ;X' 

ax=;1/!, 
(a + v)I/!= ;</J, 

may, by elimination, be reduced to anyone of 

(a + v)a (a - v)</J = ; 3</J, 
(a - v)(a + v)ax = ; 3X, 

a (a - v)(a + v)I/! =; 31/!, 

(3.11) 

(3.12) 

which are, respectively, the eigenvalue problems of the Ku­
pershmidt operator M, the Gibbon operator L, and the oper­
ator (- L t). 

The existence of only a single fifth-order isospectral 
flow, (3.10), for the operators (3.4a) and (3.4b), is thus seen 
to be a consequence of these being merely different scalar 
representations of the single system (3.11). 

The time evolution of the column vector (</J,x,I/!) Tis 
given by 

o 
G 

o 
(3.13) 

where G and K are given by (3.3a) and (3.3b), respectively, 
but expressed in terms of v by means of Eqs. (3.5a) and 
(3.5b). 

The integrability condition for Eqs. (3.11) and (3.13) is 
just Eq. (3.10), as may be verified directly. 
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4. CONCLUSIONS 

The equations considered in Sec. 3 do not, at first sight, 
seem to be connected. The factorization method, however, 
brings out the relationship between them quite simply, and 
can further be used to derive a Backlund transformation 10 

between Eqs. (3.1a) and (3.1b). 
Using these methods, II we have also studied the general 

scalar third-order differential operator 

B=a 3+ua +w, (4.1) 

for which the Boussinesq equation l2 is an isospectral flow. 
Further generalizations, including the case when the 

scattering operator is of higher order, are being considered. 

ACKNOWLEDGMENTS 

We would like to thank B.A. Kupershmidt for bringing 
Eq. (3.1b) to our attention, and J.D. Gibbon for several use­
ful discussions on these equations. 

'R. Abraham and J.E. Marsden, Foundations of Mechanics, 2nd edition, 
(Benjamin, London, 1978), p. 465. 

2M. Adler and J. Moser, Communs. Math. Phys. 61, I (1978). 
3R.M. Miura, J. Math. Phys. 9, 1202 (1968). 
4M. Wadati, J. Phys. Soc. Jpn., 32, 1681 (1972). 
5R.M. Miura, SIAM Rev. 18,412 (1976), and references therein. 
·C.S. Gardner, J. Math. Phys. 12, 1548 (1971); Y.E. Zakharov and L.D. 
Faddeev, Func. Anal. Appl. 5, 280 (1972). 

7K. Sawada and T. Kotera, Prog. Theor. Phys. 51,1355 (1974). 
·P.J. Caudrey, R.K. Dodd and J.D. Gibbon, Proc. R. Soc. Lond. A 351, 
407 (1976); R.K. Dodd and J.D. Gibbon, Proc. R. Soc. Lond. A 358, 287 
(1977). 

"B.A. Kupershmidt, private communication. 
,oA.P. Fordy and J. Gibbons, Phys. Lett. A75, 325 (1980). 
"A.P. Fordy and J. Gibbons, DIAS preprint. 
I2Y.E. Zakharov and A.B. Shabat, Func. Anal. Appl. 8, 226 (1974); H.C. 

Morris, J. Math. Phys. 17, 1867 (1976). 

Allan P. Fordy and John Gibbons 2510 



                                                                                                                                    

A modified Bars-Durgut equation with polynomial eigenfunctions 
E. Onofri 
Istituto di Fisica dell'Universitd di Parma, 43100 Parma, Italy 
and 
IN.F.N., Sezione di Milano, Milano, Italy 

(Received 8 January 1980; accepted for publication 30 May 1980) 
A singular integral equation in two degrees offreedom is defined. Its structure is similar to Bars­
Durgut equation for baryons in two dimensions. It admits polynomial eigenfunctions and its 
spectrum can be studied exactly. A comparison with numerical data available for the baryon 
equation shows strong similarities. The asymptotic behavior of the eigenvalues for high quantum 
numbers is studied in the semiclassical approximation and it is found to be in good agreement with 
the exact spectrum. A peculiar feature of this model is the presence of a transition from a region of 
periodic classical orbits with constant frequency (straight Regge trajectories in the spectrum) to a 
regime of aperiodic orbits (nearly parabolic trajectories). 

INTRODUCTION 

A singular integral equation for the bound states of 
three quarks (baryons) in two space-time dimensions was 
introduced by Bars l in the context of the quantum string 
theory and later derived by Durgue as a planar approxima­
tion of QCD. Webber3 gave a numerical solution of this 
equation in the special case of vanishing quark masses. 

The object of the present paper is to introduce a modi­
fied equation which admits polynomial eigenfunctions and 
whose spectrum can be studied exactly. The interest of such 
an equation is twofold. First of all, this soluble model can be 
taken as a rough approximation of the Bars-Durgut equa­
tion: it is plausible that this latter can be studied more easily 
in the basis where our modified operator is diagonal. Our 
operator may also provide a "reference" operator in terms of 
which one could prove that the Bars-Durgut operator has a 
compact inverse, hence a purely discrete spectrum, as was 
done by Federbush and Tromba4 for 't Hooft's meson equa­
tion. Secondly, our model has some mathematical interest of 
its own: it gives an example of a pseudodifferential operator 
whose classical analogue (principal symbol) exhibits a tran­
sition from a regime of periodic orbits with constant frequen­
cy to another regime of aperiodic orbits. Our analysis shows 
that the asymptotic spectrum is similarly characterized by 
two regimes, one with straight Regge trajectories and one 
with parabolic trajectories. Both regimes can be understood 
in terms of a semiclassical approximation, but a detailed de­
scription fo the boundary layer between the two regions 
seems to be beyond the reach of the semiclassical 
approximation. 

The paper is organized as follows. In Sec. 1 the modified 
integral equation is introduced and it is proved that it admits 
a basis of polynomial eigenfunctions. It is then shown that 
the equation is equivalent to the eigenvalue equation for the 
operator !IMII + ~IM21 + !IM31, where Mi are the compo­
nents of the standard (orbital) angular momentum operator 
acting on a suitable subset of harmonic polynomials. This 
fact provides a simple group-theoretical method to calculate 
the spectrum, which turns out to be qualitatively very close 
to that of the Bars-Durgut equation (Sec. 2). The asymptotic 
behavior of eigenvalues has been explored numerically (we 
computed the first 2556 eigenvalues); this is discussed in Sec. 

3A. The semiclassical approximation is derived in Sec. 3B 
and compared with the exact spectrum. Details about the 
calculation of the action variables are given in the Appendix. 

All the numerical work was done by my colleague and 
friend Mario Casartelli on the CDC7600 of CINECA (Bolo­
gna). A relevant portion of this paper has been made possible 
by his generous collaboration. 

1.THE MODEL 

A. The modified Bars-Durgut equation 

The Bars-Durgut equation describing three-quark 
bound states can be written as follows: 

( a l + a 2 + a 3 )¢,(X,y,z) 
x y z 

_ -.!.. (~) £1 -z¢' (cu,1 - cu - z,z) dcu 
2 ax z 0 cu-x 

_ -.!.. ( !...) £1 -x ¢' (x,cu, 1 - cu - x) dcu 
2 ayxo cu-y 

--.!..(!...) f l
-

Y 
¢,(I-cu-y,y,cu) dcu 

2 az Y 0 cu-z 

= J-l 2¢' (x, y,z), (1) 

where x, y, z are confined to the triangle x>O, y>O, z>O, 
x + y + z = I; (a/ax)z means partial derivative at z con­
stant; f denotes Cauchy principal parts; J-l2 is the eigenvalue 
(squared baryon mass in units 8g2 /31T). ¢' (x,y,z) must vanish 
on the boundary (except for a l = a 2 = a 3 = -1) and its 
norm is defined by 

II¢' 112 = fdx dy dz 8(x + y + z -1) I¢' (x,y,z) I 2. (2) 

We shall study the following modified equation 

(S¢)(x,y,z) = (s + 3)¢(x,y,z), (3) 

where 

S=SI +S2 +S3 

(SI¢)(x,y,z) 

(4) 

-.!.. v7z( !...) £1 -x ¢(x,cu,1 - cu - x) dcu 
1T ayxo cu-y 

(4a) 
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(S2t/!)(X,y,z) 

= _ ~ v ZX( ~) f1

-
Y 

t/J(1 - w - y,y,w) dw 
1T aZyO W-Z 

(4b) 

(S3t/!)(X,y,z) 

_ 1 .. 1-( a ) £1 -Z t/!(w,1 - w - z,z,) d - - - v xy - W, 
1T ax Z 0 w-x 

(4c) 

with the same conventions as above, except for the new L 2-

norm 

2 1 f dx dydz 
IIt/!11 = 21T (xyz) 1/2 8(x + y + z -1) I t/J(x,y,z) 12. 

(5) 

(The eigenvalue is denoted by s + 3 in order to have s = 0 as 
the ground state). It is easily shown that S is Hermitian and 
positive definite (as a quadratic form) in the domain Ds 
which is the (Friedrich) extension of 

Ds = ! t/!It/! = (xyz)1/2Xpolynomialj. 

In fact, by writing t/! = (xYZ)t;2a(X,y,z), we find 

(t/!,S3t/!) 

= 11t/!112 + _1 (dz V-; (-Z dwV w(l- w -z) 
41T Jo Jo 

X dw'V w'(1 - w' - z) -l
l-Z 1 

o ~ 

X [ a(w,1 - w - z) - a(~"l - w' - z,z) ]2 
w-w 

>11t/!II2, (6) 

and analogous relations are valid for SI and S2' Since S is 
bounded from below, a self-adjoint extension of Sexists 
(Friedrich's extension). The following theorem essentially 
says that we do not have to worry too much about function­
al-analytic details. 

Theorem 1: S admits a basis of eigenfunctions of the 
form t/!(x,y,z) = (xYZ)1/2P(X,y,z), with P a homogeneous 
polynomial. 

Proof we shall make use of the well-known identity 

~fl --.!!L [y(1 - y)]1/2y" 
1T oy-x 

(7) 

which can be easily proven by contour deformation in the 
complexy-plane. Now we shall prove that 
(xyz) -- 1/2 S (xyzr /2 P (x,y,z) is a polynomial of degree not ex­
ceeding the degree of P. To do this it is sufficient to consider 
the special case P = Xaybzc and to calculate the action of S3' 
the other two terms being obtained by permutation of varia­
bles. We have 

SixYZ)1/2x ay bzc 

_ 1 .. 1-( a ) fl - Z dw a + 1/2 
- - - V xy - --w 

1T axzo w-x 
X(l - w _ Z)b+ 1/2z<+ 1/2 
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(8) 

where we have defined w = (1 - z)g. By Eq. (7), the integral 
in Eq. (8) is given by a polynomial of degree a + b + 1 in the 
variable x(1 - z) - I. The factor (1 - zy + b+ I reduces it to a 
homogeneous polynomial of degree a + b + 1 in x and 
(1 - z). The derivative with respect to x gives a homogen­
eous polynomial of degree a + b and the final result is a ho­
mogeneous polynomial of degree a + b + c times (xYZ)1/2. 
Since S is Hermitian it follows that it is diagonalizable in 
each subspace, ! (xYZ)1/2Pn (x,y,z) j, with Pn homogeneous of 
degree n (n = 0,1,2, ... ). 

B. Connection with orbital angular momentum 

The eigenvalue problem for S is now reduced to an alge­
braic one. The degree n is a "good quantum number," while 
it is only an "approximate" one for the Bars-Durgut equa­
tion, as found by Webber.3 However we have to take into 
account the fact that x, y and z are not independent, which 
establishes an equivalence relation P - Q if P-Q vanishes for 
x + y + z = 1. In Ref. 3 the choice was made to eliminate 
one variable as a function of the others, but this destroys the 
manifest cyclic symmetry of the triangle. We shall instead 
make a change of variables which will uncover a simpler 
geometrical description of S and will provide a straightfor­
ward method for its diagonalization. 

Let us map the triangle x + y + z = 1 onto an octant of 
the unit sphere by introducing new variables x I' x 2, X3 as 
follows: 

x = x/ = (sinO COSlp)2 

z = X3 2 = cos20 
The norm of t/! is given by 

11t/!112= 2~ f [xy(1 :xXd~y)]1/2 It/J(x,y,l-x-y)1
2 

2l71"/2 lTr/2 
= - sinO dO dq; I CJI(O,q;)1 2, 

1T 0 0 

(9) 

(10) 

which means that CJI is normalized with respect to the ordi­
nary Lebesgue measure on the first octant. 

Let us calculate the action of S3 in the new variables; 
since (a/ax)z = - (sin2q; sin20) -I a /aq;, we have 

(S3 CJI)(O,q;) 

1 a 

(11) 
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having defined 1/ = sin20 cos2(jJ. By introducing 5 = cos2(jJ, 
; = cos2(jJ', Eq. (11) is finally reduced to the form 

(S31[/)(0,(jJ ) 

= _ (1- 52)1/2 ~ fl I[/(O,! cos -I ;) d; hr, (12) 
a5 -I ;-5 

with 1[/ vanishing at 5 = ± 1. Eq. (12) is well known to ad­
mit the Chebyshev polynomials of the II kind as eigenfunc­
tions.5 ,6 It follows that S3 satisfies the eigenvalue equation 

S3[.tl (0) sin(2(n + 1)(jJ)] = (n + 1)[.tl (0) sin(2(n + 1)(jJ )], 
(13) 

with arbitary .tl (0 ). We can then identify S3 with the pseudo­
differential operator !Ia la(jJ1 = U - (a la(jJ)2]lt2 with van­
ishing boundary conditions at (jJ = 0 and (jJ = !1T. Since 
- i a/a(jJ is the angular momentum operator 

M3 = + i(x2 al ax I - X I al ax2). it is obvious by symmetry 
that we shall find: 

Theorem 2: The singular integral operator S is unitarily 
equivalent to the pseudodifferential operator 
!IMII + !IM21 + !IM 31 acting on the unit sphere with van­
ishing boundary conditions for x IXzX3 = o. 

Now, by Theorem 1 we know that the eigenfunctions of 
S are of the form 

l[/(x)=xlxzX3P(xi,x~,xD. (14) 

It is then convenient to consider the operator S defined on 
the whole unit sphere, provided that we restrict its domain to 
the linear manifold f!lJ CL2(S2) spanned by polynomials of 
this kind. Let us observe that f!lJ is not invariant under rota­
tions, but it is invariant under M2 = M~ + M~ + M~ 
which commutes with S. We can then find a common orth­
onormal basis by requiring 1[/ to be harmonic. We now recog­
nize that the "good quantum number" n can be interpreted 

TABLE I. 0" multiplicities in &J cfiJ (/). 

n z 

o 3 

1 5 

2 7 

3 9 

4 11 

5 13 

fJ(slZJ 

o 

1 

fJ[sjz+ 12) 

fJCAlz+ 12) -

fJ[Mlz+ 12) 

0 

0 

0 

1 

0 

1 

fJcslz) + 1 

fJCAlll + 1 

fJCMlll + 2 
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0 

1 

1 

2 

2 

in terms of angular momentum. The subspace of harmonic 
polynomials of the type given in Eq. (14) withPa polynomial 
of degree n corresponds to M 2 = I (I + 1) with I = 2n + 3. 
We shall see later that the Bars-Durgut Hamiltonian can 
also be expressed in terms of angular momentum operators, 
but it contains also the coordinates x;, and it does not com­
mute with M2. 

2. GROUP THEORETICAL CALCULATION OF THE 
SPECTRUM 

A good deal of information about the spectrum can be 
obtained by symmetry arguments. The operator S = p: 1M; I 
breaks rotational invariance, but it has nonetheless some 
symmetry; precisely the full rotation group 0(3) is reduced 
to the discrete symmetry Oh of the octahedron. It follows 
that each subspace ,q;(1) of total angular momentum I must 
be reduced with respect to Oh and only the representations 
contained in f!lJ [i.e., compatible with Eq. (14)] retained. 
This is an elementary problem in group theory (see Ref. 7) 
which was solved by Bethe fifty years ago and applied to the 
splitting of atomic levels in a cubic crystal. First of all we 
notice that only the representationsA tu • A2u and Eu (in 
chemists' notation) are compatible with Eq. (14). In fact, the 
reflections (71(X~ - x), (7z(y~ - y) and (73(Z~ - z) are re­
presented by minus the identity in f!lJ, which rules out all 
other representations. The dimension 2! + 1 of ,q;(I) is re­
duced to W - 1) (recall that only odd values of I are allowed 
in f!lJ). Actually Oh is "too big" for S, the maximal symmetry 
group being in fact the permutation group in three objects. 
What we gain in considering Oh is that the reduction from 
0(3) to Oh can be readily found in the literature. The multi­
plicities,u('I/) of A lu , A2u and Eu can now befound by stan­
dard methods (see Table I). These are actually the same mul­
tiplicities found by Webber for the Bars-Durgut equation, if 
we identify Alu==A, A2u =S, Eu M, with notations of Ref. 
3 (which we shall adopt from now on). 

Now we can calculate the first few eigenvalues of S, 
with almost no more effort. In fact, let 1[/ = ~a k Y ~ belong 
to the representation S or A and suppose that the representa­
tion has multiplicity one in ,q;(I). By Schur's lemma 1[/ is an 
eigenfunction of S and the eigenvalue s + 3 is calculated as 
follows: 

s + 3 = (I[/,SI[/) = ~ I (1[/, 1M; 11[/) 
(1[/,1[/) 2; (1[/,1[/) 

= ~(I[/,IM311[/) 
2 (1[/,1[/) 

= ~ I Ik Ilak IZ/I lak IZ. (15) 

If 1[/1' 1[/2 belong toM and,u(M II) = 1, 1[/1 and 1[/2 are degen­
erate eigenfunctions and the eigenvalue can be found by tak­
ing half the trace of S. In this way we find the first few eigen­
values as reported in Table II. The basis functions were taken 
from Bradley and Cracknell. H The case n = 4 already needs 
some deeper analysis, because M occurs twice. 

The spectrum calculated so far is already sufficient to 
allow a comparison with Webber's numerical results [see 
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TABLE II. The low energy spectrum of S obtained through the reduction 0 (3)/Oh • 

n l s a b
l1 

0 3 0 S 13,1> 

5 3/2 M I 5,1 > I 5,2 > 

2 7 22/8 S cosa 17 , 1 > + sinet 17,3> 

25/8 M -sina I 7 , 1 > + COSet 17,3> I 7 , 2> 

3 9 67/16 M cosS 19 ,2 > + sinS 19,4> cosy I 9 , 1 > + siny 19,3> 

76/16 A -sinS 19,2> + cosS 19,4> 

78/16 S -siny I 9 , 1 > + cosy 19,3> 

4 11 694/128 S p 111 , 1 > + 0111,3> + TI11,5> 

736/128 M 

837/128 M 

11 It, k> = 11 l l 
/13/24 /7/24 h 3/16 2 (Y2k- Y- 2k ) ; cosa = ; cosS cosy 

a =/81/384 ; T= 1133/384 ; p = h 70/384 

a: symmetry type; b:eigenfunctions. 

Figs. l(a) and l(b) which contain data from Ref. 3; eigenval­
ues with n>5 are taken from Table III of next section]. We 
notice that the spectrum can be interpreted in terms of 
"Regge trajectories" which connect eigenvalues belonging 
to the same Oh representation; only even or odd values of n 
belong to a given trajectory. From this point of view the 
structure of the spectrum is very similar to that of the Bars­
Durgut equation. We believe that our model should be an 
even better approximation for the baryon equation with no 
potential term (a; = 0), but we do not have explicit results in 
this direction. The only qualitative difference is given by a 
lower spreading of multiplets in our model, which means 
that our operator breaks 0(3) invariance to a lesser extent; as 
a consequence there is no c(ossing of levels 4S < 3A. Let us 
observe that the Bars-Durgut equation can also be studied 
on the sphere S 2. In terms of angular momentum operators it 
is given by 

(~+ ~+ ~)¢'(X\'X2'X3) x~ x~ x~ 

+ (X IX2X3) -1/2 I x; 1M; I (X\XzX3) -1/2¢' = f.1,z¢,. (16) 

An approximate solution of this equation starting on this 
representation is now being tried. Results (if any) will be 
reported elsewhere. 

3. THE ASYMPTOTIC SPECTRUM 

A. Numerical calculation of the spectrum 

To calculate higher eigenvalues group theory is not suf-
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ficient any more, because of multiplicities higher than one. 
We shall then resort to a numerical calculation which is 
based on the following preliminaries: 

(i) an orthonormal basis in f!lJ is given by 

'?Y ~ = ~2 (Y~k - y l
- 2k ), 1= 2n +3, 1 <h;;n + 1; 

(17) 

(ii) M; are represented by the matrices 

('?Y ~'"M~'?Y ~)=4811,8kk,k2 (18a) 

('?Y ~'"M~'?Y D = ~811,Ok'.k+1 W(/ + 1) - k(2k + 1)] 

X W (l + 1) - (k + 1)(2k + 1) ] 

+ (k+-----+k ') + HI (l + 1) -4k 2 ]OIl'Okk' . (18b) 

(M ~ has the same diagonal as M i and opposite off-diagonal 
terms). We omit the proofs of (i) and (ii), which are elemen­
tary. The problem is now reduced to a purely algebraic one, 
which can be easily solved numerically. This was done on a 
computer up to n = 70.9 For lack of space we report only the 
eigenvalues for n< 12 in Table 3 and a typical example for 
high n in Table 4. The numerical calculation seems to be very 
accurate; no instabilities arise even for n = 70. A simple 
check is given by comparing the average computed eigenval­
ue with the exact average: (P:M; > = ~(IM31 > 
= 3(n + 2)/2. The numerical value agrees with this to all 
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(b) 

FIG. 1.(a) Low energy spectrum of Bars-Durgut equation (from Ref. 3). (b) Low energy spectrum of S. 

significant figures (see Table IV). 
In columns A and B of Table IV the ~igenvalues are writ­

ten in units of !V3. This shows that the highest eigenvalues 
are almost equally spaced with a gap !V3. This is easy to 
understand: these states are very sharply peaked along the 
direction (1,1,1) in M space, which implies that S cannot be 
distinguished from !v3IM.lil [where Ii = 3 -1/2(1,1,1)]. 
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Going to lower eigenvalues this is no longer true and the 
spectrum is more difficult to understand. We notice that the 
symmetry type of the eigenstates changes periodically as S­
M-M-A-S-M-M-A-S-···. Neighbor A-Sstates tend to become 
degenerate when the eigenvalue is high enough (for a given 
n) while for low eigenvalues there is a tendency to form al­
most degenerate S-M or M-A triplets. To have an idea of the 
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TABLE III. The eigenvalues of S up to n = 12. 

n l s 

0 3 0 S 

5 1 . 5 M 

2 7 2.75 S 
3.125 M 

3 9 4.1875 M 
4. 75 A 
4.875 S 

4 1 1 5.421875 S 
5.75 M 
6.5390625 M 

5 1 3 6.8192335 M 
7.2656250 A 
7.5703125 S 
8.2627977 M 

6 1 5 8.0375448 S 
8.3242959 M 
9.1649619 M 
9.9843750 A 
9.9995646 S 

7 1 7 9.3996024 M 
9.7480469 A 

10.2646484 S 
10.8708908 M 
11.7231592 M 

8 1 9 10.6027029 S 
10.8464670 M 
11.8036489 M 
12.5664062 A 
12.6211130 S 
13.4547730 M 

structure of the whole spectrum see Fig. 2: a 45° oblique axis 
has been chosen in order to be able to draw the spectrum up 
to n = 50. 

The general tendency of eigenvalues for growing n is to 
arrange themselves into a regular lattice on the right of the 
diagram, with a lattice spacing ~v'3. In the other region (on 
the left) there is a tendency to form degenerate trajectories S­
M-M-A which are approximately parabolic. Any given 
Regge trajectory starts as a straight line with a slope 4v'31g 
(referred to orthogonal axes) but is bound to merge with 
other trajectories and become parabolic. It should also be 
noticed that distinct trajectoreis never intersect. This asymp­
totic structure will be (almost completely) understood by the 
semiclassical approximation. We should stress that the as­
ymptotic spectrum of the Bars-Durgut equation is probably 
totally different; we expect straight trajectories (for a; = 0) 
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n l s 

9 21 11.9312363 M 
12.2011545 A 
12.9499258 S 
13.4827015 M 
14.3238705 M 
15.1858694 A 
15.1874338 S 

10 23 13.1211911 S 
13.3231967 M 
14.4466523 ~1 

15.1358032 A 
15.2581500 S 
16.0539443 M 
16.9186345 M 

1 1 25 14.4186363 M 
14.6282278 A 
15.6208142 S 
16.0926378 M 
16.9283504 M 
17.7814478 A 
17.7889491 S 
18.6506560 M 

12 27 15.5978308 S 
15.7630009 ~1 

17.0840932 M 
17.6908998 A 
17.9085642 S 
18.6546207 M 
19.5169432 M 
20.3826171 A 
20.3827723 S 

with a slope [(v'2)r] -I (1T-2 is the slope for the meson 
trajectory). 

B. The semiclassical approximation 

The classical analogue of our singular integral equation 
is most simply found from its expression in terms of angular 
momentum operators. We have to interpret M; as classical 
functions on the phase space T*S2, i.e., the phase space ofa 
point particle constrained to the surface of the unit sphere in 
R 3. We ignore for the moment the presence of boundaries; 
this will be taken into account later by suitably identifying 
points on the sphere. The relevant classical dynamical varia­
bles are the position x, the momentum p and the angular 
momentum M related by the following equations 
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TABLE IV. Sample eigenvalues for high n. 

n = 50 

59.2640887 
59.2789999 
63.6473144 
63.6870082 
66.5811683 
66.6648279 
68.7574642 
68.9475348 
70.2235470 
70.5749412 
71.5703533 
72.2536107 
72.4639982 
73.2167246 
74.0781501 
74.9392183 
74.9460459 
75.8083787 
76.6743484 
77.5403366 
77.5403918 
78.4063882 
79.2724134 
80.1384387 
80.1384388 
81.0044642 
81.8704896 
82.7365150 
82.7365150 
83.6025404 
84.4685658 
85.3345912 
85.3345912 
86.2006166 

A: 

B: 

(s+3)/w 

(s+3)/w 

x-x = 1 
p·x=O 
M = xAp, 

which imply 

p=MAx 
p.p= M·M. 

S 
M 
M 
A 
S 
M 
M 
A 
S 
M 
M 
A 
S 
M 
M 
A 
S 
M 
M 
A 
S 
M 
M 
A 
S 
M 
M 
A 
S 
M 
M 
A 
S 
M 
M 
A 
S 

, 

n - 51 -

60.3789627 
60.3934048 
64.8005563 
64.8383140 
67.8193050 
67.9001087 
69.9569926 
70.1251827 
71.6247572 
72.0087148 
72.6911082 
73.2356125 
74.0977934 
74.9186671 
74.9733688 
75.8093200 
76.6745518 
77.5399159 
77.5408850 
78.4063942 
79.2724143 
80.1384366 
80.1384411 
81.0044642 
81.8704896 
82.7365150 
82.7365150 
83.6025404 
84.4685658 
85.3345912 
85.3345912 
86.2006166 
87.0666420 
87.9326674 
87.9326674 

n==50 w == , 
n==51 

! /3 
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A B 

84.55 
84.96 
86.106 
86.895 86.413 
87.138 87.401 
88.007 88.029 
89.002 89.025 
89.996 89.973 
90.004 90.036 
91.00007 91.001 
92.00001 92.0002 
92.99997 92.9995 
93.00003 93.0006 
94.0000003 94.000007 
95.0000000 95.000001 
95.9999999 95.999998 
96.0000000 96.000003 
97.0000000 97.0000000 
98.0000000 98.0000000 
99.0000000 99.0000000 
99.0000000 99.0000000 

100.0000000 100.0000000 
101.0000000 101.0000000 
102.0000000 102.0000000 
102.0000000 102.0000000 
103.0000000 103.0000000 

104.0000000 
105.0000000 
105.0000000 

If we fix M, the point in phase space is identified up to an 
angle (see Fig. 3). 

(19) 

(20) 

The Hamiltonian is given by Hs = P: 1M; I and there is 
a constant of the motion M 2 = ~M 7. The motion mustthen 
take place in the intersection of the two surfaces Hs = E, 
M 2 = /2, where the numerical values of E are confined to the 
range V <.E <. ~(V 3)/. The energy surface has the shape of an 
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FIG. 2. The spectrum of S up to n = 50. 

octahedron in M space and its intersection ~ E,l with the 
sphere M 2 = /2 can be of two kinds (see Fig. 4): 

nected component being a cusped loop around the coordi­
nate axis; 

(1) ~/ < E < !( V2)/: ~ E,l has six components, each con- (2) F V2 < E <!/ v3: ~ E,I has eight components, each 

2518 J. Math. Phys., Vol. 21, No.1 0, October 1980 E. Onofri 2518 



                                                                                                                                    

FIG. 3. Classical variables on the unit sphere. 

connected component being a circle surrounding one of the 
directions ( ± 1, ± 1, ± 1). 

The two regions in phase space corresponding to (1) 
and (2) have rather different dynamical properties. In region 
(1) the components of M change sign during the motion, 
while in region (2) they do not. As a consequence in region 
(2) the Hamiltonian coincides with the component ofM 
along one of the directions (± 1, ± 1, ± 1). The Hamilton­
ian flow in this region is then given by a uniform rotation 
along a fixed axis with constant angular velocity w = ~v3. 
The action along a trajectory is easily calculated: 

i = ~EAx (Ej = sgoM;) 
(21) 

T T f p·dX = i p.i dt = ~ i E·M dt = 21T ! ' 
which gives a quantization condition E = mw 
(m = 1,1- 1,1- 2, ... ). This estimate should work for 
(2/3)lt21 < m<:). In the region where this formula applies we 
expect degeneracy of energy levels (with same m but differ­
ent I). This is in very good agreement with the observed spec­
trum: it corresponds to the region of straight Regge trajec­
tories. The part of the spectrum characterized by parabolic 
trajectories will now be shown to be related to the other 
region in classical phase space (1). Here the orbits cannot be 
calculated so simply, because the components M j change 
sign; actually we only need to calculate the action variables 
and this can be done explicitly (see Appendix). The result 
(taking into account the fact that x is confined to the first 
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octant) is the following: 

(22) 

Bohr-Sommerfeld quantization gives then I = integer and 
JiE,I) = m + v (m = 0,1,2, .. ·). For very high I we find 

Em., = V + ~(21T(m + v)llt2 + Pm , (23) 

which is in excellent agreement with the observed spectrum 
if v and the additive constant Pm are chosen appropriately. 
This quantization condition should work in the range 
V < E < ~l v2, but it is not clear where exactly it breaks 
down. While classically there is a sharp transition from re­
gion (1) to (2), we do not know exactly where and how the 
transition takes place in the spectrum. Apparently there is a 
smooth transition from one region to the other which is trig­
gered by the A-S trajectories which at a certain point bifur­
cate. This is displayed in Fig. 5. Strictly speaking, of course, 
A -S states are never degenerate, and it seems to be a difficult 
problem to identify the transition point and to understand 
this picture theoretically. Another problem is to find the 
theoretical value of the constants entering in Eq. (23): v (the 
"Maslov index") seems to be very close to 5/(21T). Finally, 
the semiclassical approximation gives a good description of 
the average Regge trajectory, but it seems to be unable to 
give the splitting between S-M and M-A trajectories. Hope-

o 
M, 

FIG. 4. The intersection of the energy surface with the surface M 2 = 12 as 
seen from the direction (1,1,1): 1) E~I \13/2; 2) 1/\12 < E <I \1312; 3) 
E = 1/\12; 4)!kE <I /\12. 
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FIG. 5. The transition from straight to parabolic Regge trajectories. 

fully the general W.K.B. expansion developed by Voros lO 

will enable one to fill some of the gaps left open in this paper. 
It is hoped that our example will stimulate some progress in 
this field. 

APPENDIX 

We want to calculate the action variables J j (E,I) for the 
tori.IE.I = {Hs =E,M2=/2

J in the region !/<E<!lv2. 
We identify two independent cycles on the torus .I E,I in this 
way: the first cycle rl is defined by keeping M fixed and 
rotating x and angle 21T. It is obvious that 

J
I 

= _1_ i p.dx = I. 
21T Yr, (AI) 

The second cycle r; is defined by varying M along the 
cusped loop aroundM3 keeping x on the (1-2)-plane; actual­
ly r; is not a fundamental cycle, but it holds r; = r I-I fz, r I 
and rz being a basis offundamental l-cycles. This implies 
that 

Jz = _1_ i p.dx = !(JJ + _1_! P.dX). (A2) 
21T Yr, 21T Yr: 

To calculate Jz' , let M = (I sin/3 cosa, 1 sin/3 sina, 1 cos{3); 
since we havex3 = Oon r;, we find x = (sina, - cosa,O) and 
p = M 1\ x = (I cos{3 cosa, 1 cos{3 sina, - 1 sin/3). The loop 
r; is composed off our arcs, each one giving the same contri­
bution to the action. The integral is calculated by inserting 
M(8) = R (ii,8 )M(O), M(O) = (0,1 sin/3o, 1 cos{3o), R (ii,8) de­
noting the rotation matrix of an angle 8 around the unit 
vector ii = 3 - 112(1,1,1). x and p are given explicitly as a 
function of 8 and we have to integrate from 8 = 0 to 
8 = 80(E,I) which is the smallest 8 for which M z(80 ) = 0: 

80(E,/) = 2tan -1 [V3 sin/301(2cos{30 - sin/3o)] (A3) 

/30 = sin -1 <V2E II) - 1T/4. (A4) 
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Some tedious but straightforward algebra leads to 

J; = 4E _ 80(E,I) 
1TV3 

2/V3 iO,,I2 2p - (~ - 2pZ)1/2 COSrt 
--- drt 

1T 0 ~ - [p + G _2pZ )1/2cosrt]2 
(A5) 

The integration can be performed in closed form to yield the 
result [Eq. (22)]. 

Note added in proof The asymptotic behavior of the 
eigenvalues in the region of parabolic Regge trajectories can 
be calculated by applying the Holstein-Primakov represen­
tation of M;. It turns out that Eq. (23) is good for m>O with 
v = 3/4 and/3m = (4m + 3) 1T/12 -1/4. Also it is probable 
that the corrected Bohr-Sommerfeld quantization of J 1 in 
Eq. (22) is given by J 1 = 1 + !. Details will be given in a paper 
in preparation. 
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For many years we have advocated a form of quantum mechanics based on the application of sum 
rule methods (completeness) to the equations of motion and to the commutation relations, i.e., to 
Heisenberg matrix mechanics. Sporadically we have discussed or alluded to a variational 
foundation for this method. In this paper we present a series of variational principles applicable to 
a range of systems from one-dimensional quantum mechanics to quantum fields. The common 
thread is that the stationary quantity is the trace of the Hamiltonian over Hilbert space (or over a 
subspace of interest in an approximation) expressed as a functional of matrix elements of the 
elementary operators of the theory. These parameters are constrained by the kinematical relations 
of the theory introduced by the method of Lagrange multipliers. For the field theories, variational 
principles in which matrix elements of the density operators are chosen as fundamental are also 
developed. A qualitative discussion of applications is presented. 

I. INTRODUCTION 

A special scheme of calculation of value in a wide class 
of problems in quantum mechanics and the many-body 
problem emerges from Heisenberg's matrix mechanics when 
matrix elements of products of elementary operators appear­
ing in equations of motion and in commutation relations are 
evaluated by physically chosen approximations to the com­
pleteness relation (sum over intermediate states). This meth­
od, first introduced for the study of nuclear collective mo­
tion, I has been applied in recent years to problems in particle 
quantum mechanics2

--4 and solitons in quantum field 
theory.5.6 

Almost from the start ofthis development, we have 
been aware that the formulation possessed a variational con­
tent, and we attempted some time ago to pin down this con­
tent within the nuclear framework. 7 More recently, we have 
alluded to this aspect on a number of different occasions3

•
8

•
9 

and even utilized it as a theoretical tool. 6 In this paper we 
give a more systematic and thorough account of this proper­
ty than we have hitherto attempted. 10 

The unifying aspect in this approach is the construction 
of a stationary expression in which the variational param­
eters are matrix elements (ultimately between energy eigen­
states) of the elementary operators ofthe theory. In particle 
quantum mechanics these are the x's and p's, in field theory 
the particle creation and annihilation operators, though ulti­
mately we show how composite operators may also be uti­
lized. For each case surveyed, we demonstrate that the ap­
propriate stationary expression is the trace of the 
Hamiltonian over the space of states studied, subject to con­
straints which remind us that the variations ofthex's andp's 
or their equivalents are restricted by their commutation rela­
tions. The structure of the variational principle suggests that 
the natural setting for this approach is indeed that class of 
problems where the need is to characterize the properties of a 

"'Present address: Dept. of Physics, Brown University, Providence, Rhode 
Island 02912. 

"'Present address: Theoretical Physics Branch, Chalk River Nuclear Labo­
ratories, Chalk River, Ontario, KOJIJO, Canada. 

special band of states selected from a much larger space (as 
opposed to a single state). 

The inclusion of constraints in the variational treat­
ment also suggests that these may be recovered from the 
variational principles as a bonus by carrying out suitably 
chosen special variations. This turns out to be the case with 
carefully stated restrictions. In consequence a complete the­
ory can be extracted from the variational principle. 

In the following sections we treat in sequence one-di­
mensional quantum mechanics (Sec. II), many-particle 
quantum mechanics (Sec. III), nonrelativistic field theory 
for bosons (Sec. IV), and nonrelativistic field theory for fer­
mions (Sec. V). Only parts of Secs. II and V have been given 
previously. The variational principles for the density opera­
tors in Secs. IV and V are new results which generalize 
known (though not widely known) results from Hartree­
Fock theory. 

In Sec. VI we comment on the classical limit, on appli­
cations past and (possibly) future, and on further theoretical 
possibilities. 

II. QUANTUM MECHANIC5-0NE DEGREE OF 
FREEDOM 

We focus attention initially on the system described by 
the Hamiltonian 

H = !p2 + V(x), 

with equations of motion 

[x,H] = ip, 

[ip,H] = dV Idx=V', 

(2.1) 

(2.2) 

(2.3) 

derived by utilization of the commutation relation (Ii = 1) 

[x,p] = i. (2.4) 

In practice,3 we have been concerned particularly with 
the matrix elements of (2.2)-(2.4) in the representation in 
which H is diagonal with eigenvalues En' namely, 

(En - Em)xmn = ipmn' 

(2.5) 
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and 

[x,p] nm = i~nm' (2.6) 

We have shown how the energy differences and the matrix 
elements xmn ' P mfl can be obtained from Eqs. (2.5) and (2.6). 
The eigenvalues themselves can be found by the direct evalu­
ation of the expectation values 

En = Hnn = (niH In) = L ~lPnn' 12 + (nl V(x)ln), 
n' 

(2.7) 

using sum rules as illustrated here for the kinetic energy. 
A natural question is whether Eqs. (2.5) possess any of 

the attributes associated with a variational formulation. We 
wish to treat the matrix elements of x and p as variables in the 
variational statement ~En = O. There are, however, two ob­
stacles to such an endeavor: (i) The matrix elements are not 
all independent. (ii) The same matrix elements appear in 
different energy functionals. ThusPnn' occurs both inH"" 
and in HfI'n' . For which is it to be a variational parameter? 

A solution to the second problem posed is to form an 
average of the stationary functionals. In this paper, we shall 
study only the most symmetrical possible average, namely, 
the trace. (See Sec. VI for some further comment.) Thus we 
require 

~ L Hnn = ~ TrH = 0, (2.8) 

" 
A solution to the first problem is to impose all the possible 
kinematical constraints, namely, 

~ [x,plnn' = O. (2.9) 

Multiplying (2.9) by a Lagrange multiplier matrix ( - l)An'n 
(A is Hermitian), we add the result to (2.8) and are thus lead 
to a master variational principle 

~Tr{H - iA [x,p]J 

= ~Tr{H -lp[A,x]J 

= ~Tr{H + ix[A,p]J = o. (2.10) 

The several forms are equivalent because of the assumed 
cyclic invariance of the trace. (This is certainly unobjection­
able in practice where the trace is taken over a finite dimen­
sional vector space.) 

Carrying out the unconstrained variation (2.10) with 
respect to the matrix elements Xn'n andpn'n' keeping A fixed, 
and using the explicit form (2,1) of H, we obtain the 
equations 

Pnn' = - i[x,A 1 nn', 

(V/)nn' = i(P,A ] nn" 

(2.11) 

(2.12) 

Because of the invariance of the trace with respect to choice 
of basis, the representation In) is, at this point, arbitrary, 
The most convenient immediate choice is the one in which 
the Hermitian operator A is diagonal. By comparing with 
the known equations of motion, we then identify A as the 
Hamiltonian. Thus we may write (2.10) as 

~TrIH-p.iJ = -~TrL=O, (2.13) 

where L is the Lagrange operator, The result is a quantum 
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Hamilton's principle, with unconstrained variation of the 
coordinates and momenta, which has been derived from a 
Rayleigh-Ritz principle with constraints. 

The structure of the variational expression as a trace 
suggests an additional inquiry, utilizing the first form of 
(2.10).9 We carry out an infinitesimal change of basis, result­
ing in alterations of commensurate size in the matrix ele­
ments ofx,pand of A (= H). The variational principle (2. 10) 
implies, however, that in this change of basis only the contri­
bution from explicit variation of A contributes. Thus we con­
clude 

Trl~A [x,p]} = o. (2.14) 

The matrix elements ~A nn' are, however, themselves not all 
independent. Let us for the moment suppose that the trace 
refers to an N-dimensional (finite) vector space. Then we 
know that there are N independent polynomials in the eigen­
values of A which are invariant under a unitary transforma­
tion. We may, for convenience, choose these as 
TrA P, p = 1, ... ,N and impose these in variance conditions 
by subtracting from (2.14) the expression 

N 1 N 
0=8Tr L -Ap_1AP=Tr L Ap_ 1AP- 18A, 

p~1 P p~1 

(2.15) 

where theAp -I are numerical Lagrange multipliers. We de­
duce that 

N-I 

[x,p] = L ApA p. (2.16) 
p~O 

Passing to the limit N_ 00, we conclude that the commuta­
tor is diagonal in the representation in which A is diagonal, 
i.e., it is a function of A. 

If matters appear to be getting complicated, we can re­
store simplicity by asking the right question. What addition­
al statements, if any, must be adjoined to the variational 
principle, with A =H so that the full dynamical scheme 
(2.2)-(2.4) is obtained? It suffices to require that the commu­
tator [x,p] be a kinematical quantity. Thus the only function 
of H it can be is then the constant function, i.e., a multiple of 
the unit operator. The correct multiple, the imaginary unit, 
is chosen by studying the equations of motion for the free 
particle, e.g., 

(2.17) 

The desired conclusion depends, however on having estab­
lished that the commutator is a c-number. 

We finally note a simple alternative to the argument 
following (2.14). Ifwe make the unitary transformation al­
luded to above starting from the representation in which 
A = H is diagonal, then the additional constraints are sim­
ply ~Hnn = 0, i.e., the eigenvalues are unchanged. The re­
maining variations-all off-diagonal elements-may be con­
sidered independent and thus we conclude, as in (2.16) that 
the commutator has only non vanishing diagonal elements. 

III. QUANTUM MECHANICS-MANY-PARTICLE 
PROBLEM 

As a first generalization of the results of the preceding 
section, we study n particles described by the Hamiltonian 
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(3.1) 

where we consider motion on the line only to simplify nota­
tion. The equations of motion 

[xi,H] = ipi' 

[ipi,H] = L ai Vij(lxi - Xj D, 
j,.oi 

(3.2) 

(3.3) 

follow from (2.18) and the commutation relations 

[Xi,xj] = [POPj] = 0, (3.4) 

[Xi'Pj] = i6ij' (3.5) 

We turn to the variational formulation. The first step is 
to establish a stationary expression with identified Lagrange 
multipliers. We choose to study the variations of the func­
tional, F, given by the expression 

F= Tr[H - i LAi [Xi'P;] - i LAij [XOPj]}. (3.6) 
. i,.oj 

The constraints (3.4) have been omitted for reasons ex­
plained below. Carrying through the required variations uti­
lizing a consistent operator notation, we have, 

(3.7) 

6F = ° = L ai Vij(lxi - Xj I> + [Ai'Pi] + i L [Aij,pj]. 
6x i Hi J#i 

(3.8) 

We can exhibit three different solutions to (3.7) and 
(3.8) which satisfy the requirement that they reproduce (3.2) 
and (3.3): 

(i) Aij =0, Ai =Aj =H, 
2 

(ii) Ai; =0, A =.!!..!.....+ " V;/Ixi -Xji), 
, I 2m jf; 

2 

(iii) Ai =~, Ai} = Vy(IXi - Xj I)· 
2m 

(3.9) 

(3.10) 

(3.11) 

In addition, any Lagrange multipliers associated with Eq. 
(3.4) are zero for these solutions. 

Further investigation indicates that (3.11) must be dis­
regarded, since the associated terms in F, Eq. (3.6), vanish, 
as one verifies using the cyclic invariance of the trace. 

Let us focus on solution (ii). To the now definite func­
tional we adjoin the assumption that the fundamental com­
mutators are kinematic quantities and that only the commu­
tators [Xi>Pi] are nonvanishing. The argument leading to 
(2.16) can then be generalized simply by placing a subscript i 
on each quantity involved. The only (temporary) doubt con­
cerning the permissibility of this step is the fact that the var­
ious A i do not commute and thus their commutators repre­
sent additional kinematical constraints. But since we are 
carrying out a unitary change of basis. these additional con­
straints are automatically satisfied. 

Continuing the argument, we insist that the commuta­
tors in question must be c-numbers, and we fix the scale from 
simple examples such as the free-particle case. 

If we choose solution (i), we can only prove, by similar 
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reasoning, that l:i [Xi'Pi] is a c-number. For identical parti­
cles, an additional requirement of permutation symmetry 
will allow the same final conclusions. 

IV. NONRELATIVI.STIC FIELD THEORY. BOSONS 

Let I//(x), I/J{x) be boson creation and annihilation op­
erators satisfying the commutation relations 

[I/J{X),¢t(y)] = 6(x - y). (4.1) 

As Hamiltonian we consider the structure 

H = f ¢t(x)h (xly)l/J{y) 

+! f ¢t(x)",t(x')V(xx'lyy')l/J{y')l/J{y), (4.2) 

where the functions h and Vare real and satisfy 

V(xx'lvy') = V(x'xlvy') = V(xx'ly'y), (4.3) 

h (xly) = h (ylx), V(yy'lxx') = V(xx'lyy'). (4.4) 

We have 

[l/J{x),H] = J h (xly)l/J{y) 

+ f ¢t(x')V(xx'lyy')l/J{y')l/J{y)· (4.5) 

In analogy with (3.6), we seek a variational principle in 
the form 

6F /6¢t(x) = ~F /~I/J{x) = 0, 

where F is of the structure 

F=Tr!H + f A (Ylx)[l/J{x),¢t(y)]). 

Equations (4.6) become, for instance, 

6F f ~¢t(x) = [l/J{x),H] + [A (xiY),l/J{y)] dy, 

(4.6) 

(4.7) 

(4.8) 

where by the first term we mean the right-hand side of(4.5). 
The only general solution we have been able to find to this 
equation is 

A (xly) = 6(x - y)H, (4.9) 

analogous to the one-dimensional problem, and this pro­
vides a suitable variational principle. 

In the formulation just given the variables are the ma­
trix elements of the single-particle creation and annihilation 
operators. We shall also uncover an alternative formulation 
in which the variables are the matrix elements of the density 
operators 

p(xly) = ¢t(y)l/J{x). (4.10) 

We rewrite the Hamiltonian in the form 

H = J h '(xly)p(y/x) + ~ J V(xx'lyy')p(y'lx')p(ylx), 

(4.11) 
where 

h '(xly) = h (xly) - ! J V(xx'iYx') dx'. (4.12) 

The density operators satisfy the commutation relations 
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[P(ylx),p(y/lx/)] = p(y'lx)<5(x/ - y) - p(ylx/)<5(x - y'). 

(4.13) 

We are thereby enabled to derive the equations of motion 

[p(ylx),H] = f eW'(ylz)p(zlx) - p(ylz)eW'(zlx) 

= [eW' ,p](ylx) = 0, (4.14) 

where 

eW'(ylx) = h /(Ylx) + v(ylx), 

v(ylx) = f V(xx/lyy')p(y'lx/). 

(4.15) 

(4.16) 

We now seek a variational principle which yields (4.14). 
The form of this principle is not as obvious as the forms 
utilized previously in this paper have become. For one thing, 
Eq. (4.13) is not the appropriate kinematical restriction since 
it holds equally for bosons and for fermions and thus fails to 
distinguish the two. By rearranging the expression 

¢t(y)[¢(x),¢(x')]1/8y') = 0 (4.17) 

with the help of the commutation relations, we find, howev­
er, that 

p(x Iy)p(x/ IY/) - p(x/ Iy)p(x lv/) 

+ p(xly)c5(x' - y') - p(x/ly)c5(x - y') = O. (4.18) 

Setting x = y and integrating, we obtain the equation 

Np(ylx) - f p(ylz) dz p(zlx) + Nc5(y - x) - p(Ylx) = 0, 

(4.19) 

where N is the number operator 

N = f ¢t(x)¢(x) dx. 

We write (4.19) in operator form as 

p2 + P _ Np - N = 0, 

and this will prove to be the constraint sought. 

(4.20) 

(4.21) 

Weare now prepared to establish the stationary proper­
ty of the functional 

F=Tr[H-I1[p2+p-Np-N]-j-LNJ, (4.22) 

where we have introduced two Lagrange multiplier opera­
tors 11, which is also a matrix in the space of x, andj-L, which 
does not carry any free spatial coordinates. The condition 
which we wish to verify (with suitable choice of 11 andj-L) is 

c5F /c5p = O. (4.23) 

With attention to the several kinds of product involved in 
our definitions, (4.23) yields [with eW' defined by (4.15)] 

eW' = I1p + pl1 + 11 - I1N - tr(l1)l - trl1 1 + j-Ll, (4.24) 

where tr is a trace only in the space of x and 

(xl 1 Iy) = c5(x - y). (4.25) 

From (4.24) we form the commutator withp and find 

[p,JY] = - fl(p2 +p - Np) + (p2 +p -Np)fl 

+ [Ntrl1,p] + [trl1,p] - /It,p], (4.26) 

or utilizing (4.21), 
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[P,JY] = [N,fl] - [p,Ntrl1] - [p,trl1] + [p,j-LJ. (4.27) 

This last equation must agree with (4.14). This can be 
achieved if we require 

[N,fl] =0, 

H=Ntrfl, 

j-L = trl1. 

(4.28) 

(4.29) 

(4.30) 

Since, in practice, we determine p from the solution of 
(4.14) and (4.21), the Lagrange multiplier 11 here serves only 
as an intermediary quantity which, in principle, is deter­
mined by (4.24). 

The further question of the extent to which the kinema­
tical constraints can be reconstructed from the variational 
principle will not be pursued, since the considerations are 
analogous to those given in previous sections. 

V. NONRELATIVISTIC FIELD THEORY. FERMIONS 

Now let ¢t(x), ¢(x) be fermion creation and annihila­
tion operators satisfying the anticommutation relations 

[¢(x),¢t(y) J = c5(x - y). (5.1) 

As Hamiltonian we choose the form (4.2) with the properties 
(4.4), except that (4.3) is replaced by 

V(xx/lyy/) = - V(x/xlyy/) = - V(xx/ly'y). (5.2) 

The equations of motion are of the form (4.5), 

[¢(x),H] = f h (xly)¢(y) 

+ f ¢t(x/)V(xx/lyy')¢(y/)¢(y)· (5.3) 

At this point the natural impulse is to imitate Eq. (4.7), 
multiplying the Lagrange multiplier A ( y Ix) by the anticom­
mutator. The maneuver fails, however, if pursued heedless­
ly, to produce a viable variational principle, for a reason 
which will illuminate the way to a solution of the difficulty. 
To understand the source of the problem, we must make a 
distinction between systems composed of an even number of 
fermions which, as composites, have bosonic properties and 
systems with an odd number offermions, which retain fully 
their fermionic character. We denote states of the former by 
In), and states of the latter by Ii) or Ij), according to con­
text. Thus we write 

(nl¢t(y)¢(x)ln') = L (nl¢t(y)li)(il¢(x)ln') 
; 

and 

(nl¢(x)¢t(y)ln') = L (nl¢(x)V)vl¢t(y)ln') 
j 

= LXj(xn)x](yn'). 
j 

(5.4) 

(5.5) 

In the boson variational principle of the previous section, we 
identified the amplitudes cP; and Xj before variation, which 
should be correct to order N-' for a boson system, but is 
qualitatively wrong for a system offermions. One need only 
think of the Hartree-Fock limit to see this. Here 
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In) = In') = I Slater determinant of occupied orbitals). 
Then tPi(X) are the orbitals ofthe occupied single-particle 
states, Xj(x) the orbitals of the unoccupied single-particle 
states. These must be varied independently subject to the 
constraints which follow from (5. I), namely, 

(n I {t/I(x),t/lt(y)] In') 

= 0 (x - y)onn' 

= L <P ;(yn)<Pi(xn') + LXj(xn)x](yn') 
, j 

p(xn'lyn) + r(xn'lyn). (5.6) 

(Notice the peculiar association ofindices in the definition of 
r). 

We now propose the following functional as the basis 
for a variational principle. 

F= Tr{~h '(p - r + 1) + AV(p - r + l)(p - r + 1) 

-0(p+r»), (5.7) 

which is indeed equivalent to what was proposed initially in 
this section except that we have symmetrized the terms of 
the Hamiltonian by means of (5.6). 

Variation of (5.7) with respect to <P T(xn) and xl yn) 
respectively yields the equations 

J JIt'(xnlyn')<Pi(yn') = J (n'IA (xly)ln)<Pi(yn'), (5.8) 

J x ](xn')JIt'(xnlyn') = f xJ(xn')(n'IA (xly)ln), 

(5.9) 

where 

JIt'(xnlyn') = h '(xly)onn' + f V(xx'lyy')p(y'nlx'n'). 

(5.10) 

For (5.8) and (5.9) to be correct, they must agree with the 
matrix elements of (5.3) and its Hermitian conjugate. These 
equations are 

f JIt'(xnlyn')<Pi(yn') = (En - E,)<Pi(xn), (5.11) 

(5.12) 

where En and Ei are the energies of the states In) and Ii), 
respectively, or comparing with (5.8) and (5.9), 

f (n'IA (xly)ln)<Pi(yn') = (Ell - E;)<Pi(yn), (5.13) 

f x](xn)(n'IA (xly)ln) = (En - EJx](yn). (5,14) 

These equations provide a determination of A. But 
more important for our purposes they allow us to simplify 
the variational principle. By combining (5.13) and (5.14) 
after the formation of suitable bilinear expressions we obtain 
for the combination that appears in (5.7), 

Tr{A (p + r)] 

~ ~ f [En l<pi(xn)j2 - Ei l<pi(xnWl (5.15) 
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+ ~If [E"lxlxnW-EjIXj(xn)[2]. 
J n 

(5.15) 

The required identity of the two sides of(5.15) permits us to 
start from a revised and simplified variational principle in 
which Ei' Ej' and En play the role of Lagrange mUltipliers. 

We now ask: What are the constraints for which these 
serve as multipliers. constraints which are equivalent to the 
totality of constraints otherwise and originally expressed by 
(5.6)? According to (5.15) the energy Eo e.g., is associated 
with a condition 

(5.16) 

This is the condition that the "wave function," eigenvalue 
labeled by i and components labeled by (xn), should have a 
fixed norm in the variation. Similarly for Ej 

o ~ J dx IXj(xnW = O. (5.17) 

One should not be beguiled into setting the norms equal to 
unity, however, since this value is correct only in the extreme 
Hartree-Fock limit. Otherwise the values must be deter­
mined from (5.6) or in the case of (5.16) from the nonlinear 
equation for p given below in Eq. (5.22). 

The remaining constraints implicit in (5.15), for which 
En serves as Lagrange multiplier, can be understood in part 
as conservation of particles, 

(nINln) = ~ f dx [<Pi(xn)j2. (5.18) 

However, the sign of the other term involving En is more 
difficult (in our opinion) to understand on a priori grounds. 
Thus a symmetrization of the condition (5.18), using (5.16) 
would have led to the opposite sign. 

At this juncture, we are ready to notice that it is possible 
to construct a variational principle for p(xn lx' n') or its ingre­
dients <P i (x' n ') alone. A form which upon variation yields the 
correct equations of motion is 

G = Tr{ h 'p + Wpp) - {; f (En - EJI<pi(xnW· 

(5.19) 

The main point, of course, is that the "Hamiltonian" JIt' 
which determinesp is a functional only ofp itself and thus, in 
analogy with Hartree-Fock theory, we might think it possi­
ble to determine p first and r afterwards. There is one re­
maining objection to the theoretical feasibility of this pro­
gram, namely. we need a condition for the normalization ofp 
which is independent of r, so that we can dispense with (5.6). 
Such a condition is provided below in Eq. (5.22), which is the 
analog for fermions ofEq. (4.21) for bosons. 

Our previous remarks should be clearer once we show 
that a variational principle analogous to (4.22) for bosons 
can be formulated. Indeed all we require is an analog of 
(4.21). Starting from the expression 

t/lt(y)[ tP(x),tP(x'»)t/lt(y') = 0, (5.20) 

we derive 

p(xly)p(x'ly') + p(x'lx)p(xly') 

Abraham Klein, Ching Teh Li, and Moyez Vassanji 2525 



                                                                                                                                    

= p(x'ly)<5(x - y') + p(xly)<5(x' - y'). 

Setting x = y and integrating we find 

p2 .,-P + Np - N = 0, 

which is the constraint sought. 
We therefore study the functional 

F= Tr{H - n(p2 -p +Np - N) -f-lN]. 

The condition 8F /8p = 0 yields 

F = np + pn - n + n + (trn)N 1 + (trn)1 

+f-l1, 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

or utilizing (5.22) and the assumption that n commutes with 
N, we have 

[p,H] = [p,trnN] + [p,trn] + [p"u]. 

This is the correct equation of motion if 

H= -Ntrn, 

f-l = - trn. 

(5.25) 

(5.26) 

(5.27) 

Finally we consider the important question of the ex­
tent to which (5.22) determines the norm of the amplitudes 
<p;(xn). From the equation of motion (5.11) we can conclude 
in the standard way [because F(xnlyn') - En8nn.8 (x - y) 
is an Hermitian operator] that 

(5.28) 

whereff; is a normalization condition to be determined. On 
the other hand, Eq. (5.22) when written out is 

f dx' 4 <p t- (x'n)</J;- (xn")</J Hyn")</Jr (x'n') 
II 

I <p ;'(yn)<p;, (xn') 
r 

By forming obvious scalar products so as to utilize (5.28), 
and introducing the definition 

P;;,(nln')= f dx <p ;(xn)<Pr(xn'), (5.30) 

we find a result that can be written in the form 

= N (ff; - JIIf) + ffi 
,,4," Pi;" (n'ln")pi"i' (nln')Pi';(n"ln). 

n,n ,n ,II 

(5.31) 

In the Hartree-Fock limit when there is no sum on n values, 
the product of P 's becomes A1 and we obtain the usual nor­
malization condition ff; = 1. In many cases of interest it 
should be possible to solve (5.31) by iteration starting from 
this extreme value. 

This argument also shows that the variational principle 
based on (5.19) provides a complete scheme of ca1culation­
without our having to consider at the same time the X ampli­
tudes. This constitutes a considerable simplification. 
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VI. DISCUSSION 

The purpose of this exposition has been to state and 
prove a number of variational principles associated with 
Heisenberg matrix mechanics. Our discussion has been pur­
posely monolithic, but we have thereby failed to touch sever­
al issues of some importance, which we will survey in our 
final remarks. For these remarks let us initially refer to the 
specific model of one-dimensional quantum mechanics. 

The variational principle given for this simple case in­
volved the trace of the Hamiltonian H. The variation then 
yielded the Heisenberg equations of motion. In practice one 
solves a set of nonlinear algebraic equations3 derived as ap­
proximations to the equations of motion and the commuta­
tion relations. We can prove a theorem, but will not do so 
here, that in this scheme H is diagonal in the same subspace 
of Hilbert space used to derive the approximate scheme. Be­
cause the equations expressing the commutation relations 
were part of the computation scheme, we have thereby also 
found a representation of the algebra-to the same 
approximation. 

It is the theorem quoted above about the diagonaliza­
tion ofthe Hamiltonian which selects the trace as the favored 
average for formation of a variational principle. According 
to the Rayleigh-Ritz principle, however, 

8 (niH In) = 0, (6.1) 

any weighted average should be stationary and a suitably 
constrained weighted average should, upon variation, yield a 
valid set of equations. If these equations are adjoined to the 
matrix elements of the commutation relations so that a suffi­
cient number of equations is available to determine the ma­
trix elements of x, of p, and of the Lagrange multipliers that 
appear in the scheme, we determine thereby a basis in a sub­
space, but one in which H is not, in general, diagonal. On the 
other hand the matrix of H can be computed by sum rule 
methods and the diagonalization carried out as an indepen­
dent second step. In the past, we have, in fact, stumbled onto 
such formulations and applied them to the study of various 
nuclear models. 1I

·
12 One may even think of circumstances 

which call for the use of a weighted average, e.g., a situation 
where one favors accurate knowledge about one or more 
states over others in the subspace considered. 

Until now, the variational principles have not been used 
directly, except for theoretical development. We can envi­
sion future applications in which trial values (with param­
eters) of the matrix elements of the fundamental operators 
are entered directly into the variational principles. 

We mention finally two other aspects of the problem for 
further theoretical study. The first is the study of the c1assi­
cal limit where the following results emerge rather easily: 
The variational principles involving canonical variables 
(commutation relations!) go over into Hamilton's principle. 
The principles involving the density matrix go over first into 
a Hartree or Hartree-Fock formulation and eventually into 
a classical density matrix formulation. 

To explain the second aspect, we start by reducing the 
complexity of the field-theory problem by introducing a 
"shell model," that is, by expanding in a complete setla (x), 
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(6.2) 

and retaining only a finite number of terms. At this juncture 
the a1aa play the role played previously by p(xly) and there 
is nothing new to be said. However in a further simplifica­
tion, we sometimes form closed Lie algebras from 
combinations 

I a~(ji)a{3a{3==Ji' i = 1, ... , (6.3) 
a,{3 

and approximate H as a polynomial in the J i (not the angular 
momentum in general). One may at this point ask for a vari­
ational principle. In so far as one now drops the definition 
(6.3) and defines the J i by their commutation relations 

(6.4) 

with structure constantsfjk' and the representation by the 
values of the Casimir invariants, one finds new and challeng­
ing forms of the variational principle. 

We plan to develop these remarks in future work. 

2527 J. Math. Phys .• Vol. 21, No.1 0, October 1980 

ACKNOWLEDGMENT 

This work was supported in part by the DOE through 
contract No. EY-76-C-02-3071. 

'A. K. Kerman and A. Klein, Phys. Lett. I, 185 (1962). 
2F. R. Halpern, J. Math, Phys. 14, 219 (1973). 
3c. T. Li, A, Klein, and F. Krejs, Phys. Rev, D 12, 2311 (1975). 
4c. A. Uzes, Phys. Rev. D 14, 3362 (1976). 
'J. Goldstone and R. Jackiw, Phys. Rev. D 11,1486 (1975). 
6A. Klein and A. Weldon, Phys. Rev. D 17,1009 (1978). 
7G. Do Dang, G. J. Dreiss, R. M, Dreizler, A. Klein, and Chi-Shiang Wu, 
Nucl. Phys. A 114, 501 (1968). 

• A. Klein and F. Krejs, Phys. Rev. D 12, 3112 (1975). 
9 A. Klein and C. T. Li, Physica (The Hague) 96A, 243 (1979); Section 3 of 
this paper describing the derivation of commutation relations is seriously 
in error-a conceptual and an algebraic error cooperate to yield the result 
sought. A correct exposition is found in Sec. II and in Sec. III of the 
present account. 

'''rhe only published paper on this general subject, written by someone 
outside our group, of which we are aware, is by D. Janssen, Yad. Fiz. 28, 
935 (1978) [Sov. J. Nue!. Phys. 28, 479 (1978)]' This work applies a meth­
od described in Ref. 7. 

"C. Dasso, F. Krejs, and p, K. Chattopadhyay, Nuc!. Phys. A 210, 429 
(1973). 

I2F. Krejs and A. Klein, J. Math. Phys. 14,1155 (1973). 

Abraham Klein, Ching Teh Li, and Moyez Vassanji 2527 



                                                                                                                                    

Dynamical symmetry and magnetic charge 
Jonathan F. Schonfeld 
Laboratoire de Physique Thiorique de [,Ecole Normale Superieure, a) 24 rue Lhomond, 75231 Paris-cedex 05, 
France 
and 
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 

(Received 20 February 1980; accepted for publication 6 June 1980) 

By adding to the force between an electric and a magnetic point charge a central force arising from 
a specially chosen potential, one can construct a system known to have the same SO (3,1) and/or 
SO (4) dynamical symmetry algebra as the Kepler system. We derive projective changes of 
variables under which the classical orbits of any such system are put in one-to-one correspondence 
with SO (3.1)- and/or SO (4)-invariant sets of curves on similarly invariant surfaces. This extends 
results hitherto established only for the Kepler system. This is surprising in that there is a sense in 
which the phase space of such a magnetic system is a truncation of the Kepler phase space and so 
one might have expected such global properties not to generalize. Our transformations apparently 
do not permit transcription of the corresponding Schrodinger equation into a manifestly SO (3.1)­
and/or SO (4)-symmetric form, in contrast to the pure Kepler case. Such magnetic systems play 
roles in the theory of quantum fields in Taub-NUT space-times. and in the theory of quantum­
mechanical fluctuations about extended magnetic monopoles in supersymmetric gauge theories. 
In passing. we use the properties of the magnetic systems to formulate a very short and direct 
proof that the classical orbits of the Kepler system are conic sections. 

1. INTRODUCTION 

According to a general theorem! that can easily be veri­
fied by direct calculation, if the 3-vector r satisfies the equa­
tion of motion 

.. _ qrXr v[ V( ) q2] mr- --- r +--
~ 2m,z , 

then the related vector R. defined by 

R-[r + qrLIL 2](1 _ q21L 2) -\, 

satisfies the equation 

mR= - VV(R), 

(1.1) 

(1.2) 

(1.3) 

and both orbits have the same energy (which we shall call E). 
The vector in (1.2) is simultaneously the conserved angular 
momentum for both systems (1.1) and (1.3), 

(1.4) 

and L is its length, just as rand R are the lengths of rand R 
respectively. The symbol r stands for r/r. 

From this one might be tempted to conclude that sys­
tems (1.1) and (1.3) are really the same system expressed in 
two different coordinate schemes, but this is naive for two 
reasons: 

First, one notices that, by virtue of(1.4), L;;. Iql because 

Ilmrx r - qrl12 = II mr x r ll 2 + q2;;.q2. (1.5) 

Thus there are no orbits of system (1.1) that correspond un­
der transformation (1.2) to those orbits of system (1.3) satis­
fying IImRXRII < Iql· 

Second, one observes that the transformation (1.2) is 
formally singular when L = Iql. This is an indirect reflection 

"'Laboratoire propre du CNRS associe a l'Ecole Normale Sup6rieure et a 
l'Universite de Paris-Sud. 

of a basis mismatch between the two systems. If L is fixed at 
Iql, then, forfixedL andE, there is only one solution of (1. 1), 
whereas there are in most cases infinitely many such orbits of 
(1.3) (anyone is obtained from any other by rotation about 
L). Thus the singularity in (1.2) indicates that whenL = Iql 
the correspondence between orbits of (1.1) and (1.3) is not 
one-to-one but one-to-many. 

In summary. the transformation (1.2) determines a one­
to-one correspondence between the phase space of system 
(1.1) and a set formed from the phase space of system (1.3) by 
excision of the set mllRXRl1 < Iql and by the performance of 
certain topological identifications at the boundary 
mllRXRII = Iql. (Incidently, a similar phenomenon has re­
cently been observed in a set of dynamical systems of fields. 
See Ref. 2.) 

We raise this issue because the quantum mechanical 
version of a system of type (1.1) with a high degree of dyna­
mical symmetry has recently turned up in two distinct set­
tings in quantum field theory. (We shall describe them in 
detail at the end of this section.) The potential involved in 
either case is of the general form 

V(r) = _1_(mk + If..)2 _~, 
2m q r 2m,z 

(1.6) 

where k is a constant. It is clear that with the potential given 
by (1.6), system (1.3) has the Kepler form, and therefore has 
a conserved Runge-Lenz vector. as well as a conserved ener­
gy and angular momentum. Through transformation (1.2) 
this property carries over to system (1.1) as well. The expres­
sion for the Runge-Lenz vector of system (1.3) in terms of 
the coordinate r is 

M==mRXL+kR 
= (1 - q21L 2) -1/2 [Mq + (kqlL 2)Lq], 

(1.7) 
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where the conserved vector Mq is defined by 

Mq=mrXLq + kP. (1.8) 

One can check3-6 directly that, just as in the pure Kepler 
case, either classically (using Poisson commutation) or 
quantum-mechanically (using operator commutation, pro­
vided the magnetic monopole coupling q is quantized appro­
priately), the components ofLq and (m12IEI)1/2 Mq form the 
Lie algebra of 0 (3,1) for E> 0 and of 0 (4) for E < 0, where 
the conserved quantity € is defined by 

€=E _ mk 2 ==oJ..- mllr\l2 + _1_ (fJ.. + mk)2 
2q22 2mr q 

- 2~ ( :k r (1.9) 

(The importance of € is that, unlike E, it has a smooth limit as 
q -+ 0.) In the quantum-mechanical case, for any energy ei­
genvalue of the Hamiltonian the corresponding eigenstates 
filI out complete representations of this 0 (3,1) or 0 (4). 
Henceforth, as we shalI always be referring to Lq and M q , we 
shall omit the sUbscript "q." The momentum canonically 
conjugate to r is 

p=r + qA(r), (1.10) 

where the necessarily singular vector potential A is defined 
up to Abelian gauge transformation by 

VXA = r/r. (1.11) 

We shall use the name "q-Kepler" to indicate systems 
of the kind shown in (1.1) with potential given by (1.6), and 
"Kepler" or "pure Kepler" or "q = 0" to indicate the corre­
sponding systems of the kind shown in Eq. (1.3). The results 
in the present paper extend to the q-Kepler systems some 
statements about the geometrical significance of the 0 (3,1) 
and 0 (4) symmetry algebras that had been previously for­
mulated only in the pure Kepler case. 7 

In the classical version of the pure Kepler case, for € < 0 
(when the sign of k permits) there are known to be two sepa­
rate projections from spheres in four-dimensional Euclidean 
space--one (stereographic) to three-dimensional velocity 
space and one (vertical) to three-dimensional position 
space-that establish one-to-one correspondences between 
physical orbits and great circles on the spheres.8 Of course 
any two great circles on the same sphere can be transformed 
into one another by 0 (4) rotations. For € > 0 there are analo­
gous correspondences between the set of physical orbits and 
0(3,1 )-invariant sets of paths on mass-hyperboloids in four­
dimensional Minkowski space. 

Our main results, detailed in the next section, are the 
generalizations of these projections to the q-Kepler systems. 
The appropriate generalizations of the vertical projections 
turn out to be straightforward. The generalizations of the 
stereographic projections are not. In the pure Kepler case 
the center of the well-known projection is located on the 
sphere or hyperboloid being projected; when q is nonzero the 
center of the projection turns out to be located off the sphere 
or hyperboloid. An important consequence is the following 
distinction: when q = 0 the projections into velocity space 
(understood to include a point at infinity) are onto and one­
to-one, whereas when q=/=O there are regions of velocity 
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space excluded from the ranges, and the projections are two­
to-one in large regions of the domain. 

The existence of these maps, an open question until now 
(and conjectured against in Ref. 4), is somewhat surprising 
to us. We had expected that the spheres and hyperboloids of 
the pure Kepler system would suffer some sort of damage on 
account of the excisions and topological identifications im­
plicit in the passage (1.2) to the q-Kepler systems. Evidently 
this is not so, at least classicalIy. 

The quantum-mechanical situation is different. In the 
pure Kepler case, under the stereographic projections dis­
cussed above, the momentum-space Schrodinger eigenvalue 
equation is known to transform into an equation manifestly 
covariant under the 0 (4) or 0 (3,1) symmetry group of the 
associated sphere or hyperboloid.7 For several reasons there 
appears, in contrast, to be no such quantum-mechanical role 
for the stereographic projections of the general q-Kepler 
system. First, because when q is nonzero the three compo­
nents of kinetic momentum, to which the projections refer, 
do not commute as operators and therefore cannot be used as 
Fourier transformation variables. Second, because when q is 
nonzero the projections are, as noted above, neither one-to­
one nor onto, so that even if one could sensibly define a wave­
function on physical velocity space one could not thereby 
transfer it to the appropriate sphere or hyperboloid without 
conspicuous loss of information. We shall return to this issue 
in the third section. 

As mentioned earlier, the quantum-mechanical version 
of the q-Kepler system, 

Et/! = ( ~~ (V - iqA)·(V - iqA) + 2~ ( :k + ~ y]t/! 

(1.12) 

has appeared in two distinct settings of current interest in 
quantum field theory. 

Most recently Page9 observed that Eq. (1.12) describes 
the components of angular frequency q in the Green's func­
tion of a scalar quantum field propagating through the self­
dual Taub--NUT spacetime, provided one makes the identi­
fications 2m=I and krxq. 

Equation (1.12) also corresponds to an equation that 
determines (up to boundary conditions 10) the spectrum of 
smalI quantum-mechanical fluctuations about a particular 
singular solution to the Bogomolny monopole equations in a 
supersymmetric gauge theory. II The appropriate eigenvalue 
equation determining (up to boundary conditions) the spec­
trum of fluctuations about the general solution is 

(1.13) 

where P is a fluctuating pseudoscalar field, S is the vacuum 
expectation of a scalar field, 0) is the angular frequency of the 
fluctuation, and g is a coupling constant. Both P and Stake 
values in the Lie algebra of the gauge group, and the action of 
the covariant derivative is defined by 

(1.14) 
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where d j' itself an element of the Lie algebra, is the expecta­
tion of the gauge field. Bogomolny's equation for S and the 
d j is 

DjS = !Ejk/Fk/' (1.15) 

where Fis the non-Abelian field strength determined by d. 
To obtain (1.12) as a special, albeit singular, case of (1.13)­
(1.15), let Tbe an arbitrary element of the Lie algebra, let 
{ta I be the set of solutions to the eigenvalue equation 

[T,t] = At, (1.16) 

and define the functions ifJa by 

Then, with d j defined as in (1.11), the fields 

A j=d j T, S = - (1/r + const)T 

(1.17) 

(1.18) 

solve (1.15); and when (1.18) is substituted into (1.13) the 
functions ifJo satisfy (1.12), with the identifications 2m=l, 
q gAo, k =2q2 X const and E =oi. [In this context the fa­
miliar quantization condition q = n/2 with n integral, for 
every value of the index a, amounts to the condition that d j 

and S as given by (1.18) can be gauge transformed into a 
nonabelian spherically symmetric configuration having no 
string singularity.] 

A natural question to ask at this point is whether the 
high dynamical symmetry ofEq. (1.13) is present only for 
the substitution (1.18) (which has a gauge-invariant singu­
larity at the origin), or whether at least part of the dynamical 
symmetry might be active under more general conditions­
for example assuming only (1.15) and rotational symmetry. 
In particular, does Eq. (1.13) exhibit any dynamical symme­
try when one substitutes for d and S any of the explicit 
nonsingular spherically symmetric solutions to (1.15) de­
rived in Refs. 12-14? At present this remains speculative. 

It may be useful to note in passing that at large distance 
the nonsingular Prasad-Sommerfield 12 solution to (1.15) 
turns out to approach a gauge transform of (1.18) with a 
negative constant, corresponding to an attractive Kepler 
term in (1.12). Thus one expects that in such a background 
the fluctuation equation (1.13) should have infinitely many 
bound states, with a high degree of near-degeneracy corre­
sponding to the SO (4) mUltiplets ofEq. (1.12). 

We now turn to a detailed description of the projections 
that make explicit the dynamical symmetry of the classical 
q-Kepler systems. As an amusing tangent, we formulate at 
the end of Sec. 2 a very brief and direct proof that every 
classical orbit of every q-Kepler system is a conic section. 
The paper will conclude with the third section, in which we 
discuss the quantum-mechanical situation in more depth. 

2. PROJECTIONS OF THE CLASSICAL q-KEPLER 
SYSTEMS THAT MAKE THE DYNAMICAL SYMMETRIES 
MANIFEST 

The algebra that follows generalizes the calculations of 
Ref. 8. We imagine in what follows that the physical position 
and velocity vectors move in three linear dimensions of a 
four-dimensional linear space. The generic 4-vector will be 
called u, represented in coordinates as (uo'u). We define the 
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inner product of two such vectors u and u' to be 

u·u'-uoub - (sgn E)U'U', (2.1) 

where E is defined in Eq. (1.9). Thus we imagine bounded 
motion (E < 0) to take place in a four-dimensional Euclidean 
space, and unbounded motion (E> 0) to take place in a four­
dimensional Minkowski space. The case E = 0 is exceptional 
in this framework and must be treated as a common limit of 
the other two cases. Note that E can be less than zero only if k 
is negative. 

Before we proceed with the discussion of the projec­
tions, let us derive a useful identity relating M"1., L 2, and E. 
According to the definition (1.7), 

M2 = v2L 2 _ (v.L)2 + ~ L.(rxv) + k 2 

r 

= v2L2 - (V·L)2 + ~L.(L + qP) + k 2 
mr 

~ 2k 2kq2 =v2L2_q2(r.v)2+ _L2 ___ +k 2, 
mr mr 

(2.2) 

where v denotes velocity (r). At the same time, it follows 
from definition (1.4) that 

A 2 2 q2 L 2 
(r·v) =V + -- -. (2.3) 

m 2r m 2r 
Upon substituting (2.3) into (2.2), one obtains 

M 2 = (L 2 _ q2) 2E + k 2, (2.4) 
m 

which is the desired identity. 
Now let us define 

Uv =( ( 2~1 y12( 1 _ 2;r). 2;r v) (2.5) 

u,=( - r.v~ ,2Et - M). (2.6) 

These four-vectors satisfy the norm identities 

u; = (2q2E Im)( - sgn E). 

(2.7) 

(2.8) 

Equation (2.7) is an immediate consequence of the defini­
tions of E and E. To prove (2.8), one first expands the left­
hand side: 

u; = M2 -4HoM +~r -2Em(rov)2, (2.9) 

and then one substitutes (2.4) into the first term, (2.3) into 
the last term, and one transforms the second term using the 
identity 

1 
roM = Lo(rXv) + kr = - Lo(L + qP) + kr 

m 

1 2 2) k = -(L -q + r. 
m 

(2.10) 

Note that for E> 0, U v is timelike while U v is spacelike. For 
any value of E it is easy to see that u"u v = O. 

u, and Uv also satisfy 

0= uv'P = Ur'p = uv·n = ur·n, 

where 

Jonathan F. Schonfeld 
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(2.12) 

and 

n=(O,k L + qM). (2.13) 

The first equality in (2.11) is proved by expanding 

uvP = ( 2:1 yl2[ 1 _ 2:r - ";; v~~:~) ]. 
(2.14) 

and then observing that 

v.(MXL) = (v·LZ
) - v2L 2 - k L-(rxv) 

= q2(v.i)Z _ v2L Z _ ~L 2 _ q2) 
mr 

1( k) 2 2 = m 2E - "7 (L - q ), (2.15) 

where the last equality in (2.15) follows from an application 
of (2.3). The second equality in (2.11) is proved by expanding 

UrP = V 2mlEI [- (rov) - ro(MXL)/(L 2 _ q2)], 
(2.16) 

and then observing that 

ro(MXL) = Lo(rXM) = V[rX(vxL)] 

= - Lo(L(rov) + vqr) 
= _ (L 2 _ q2)rov. (2.17) 

The third equality in (2.11) follows immediately from the 
identity 

k L + qM = (kmr - qL)xv, (2.18) 

while the last equality in (2.11) reflects the decomposition 

(k L + qM)o(2a - M) 

= - 2Ekqr + 2EqroM - k MoL - qM 2, (2.19) 

into which one should substitute the right-hand sides of Eq. 
(2.4) and (2.10), as well as that of the simple relation 

LoM = - kq. (2.20) 

The4-vectors(O,v), U v and «2IEllm)1/2,O) (=d) are co­
linear, so that by virtue of (2.7) and (2.11) we can say that, 
for fixed energy, each orbit in velocity space is a stereograph­
ic projection, through a fixed center, of the intersection of a 
fixed sphere or two-sheeted hyperboloid with some two-di­
mensional plane through the origin. In addition, by virtue of 
the structure of Un for fixed energy the corresponding orbit 

FIG. I. Stereographic projection (in cross section) of a sphere into a plane 
through a point (d) located above the sphere. Both points a and b project 
onto the point (0,,,). 
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FIG. 2. Stereographic projection of a positive-mass hyperboloid into a plane 
through a point located below the upper sheet and above the plane. Both 
points a and b project onto (0,,,). The dashed lines indicate asymptotes. 

in position space is a vertical projection of the intersection of 
a fixed sphere or spacelike (one-sheeted) hyperboloid with 
the same two-dimensional plane through the origin. The 
sheet of the double-lobed hyperboloid, for E > 0, corresponds 
to the sign of U v.o' This must be a constant of the motion, so 
that it can be determined from the coordinates of the orbit at 
large times. Since the motion is unbounded when E is posi­
tive, uv,o at large time is approximately equal to 
( - (2 I EIJm)l/z·(2€lk )rl, from which one learns that the up­
per sheet of the hyperboloid is the appropriate one for k < 0 
(attractive Kepler coupling), while the lower sheet corre­
sponds to k> 0 (repulsive coupling). 

Note that, for q¥=O, the distance from d, the center of 
projection, to the origin is greater than the radius of the 
sphere for E < 0 and less than the mass of the hyperboloid for 
E> O. This situation is illustrated in Figs. 1 and 2. One sees 
that there is an outer boundary to the set of velocities that 
can be reached by such a projection, corresponding to the 
intersections with the subspace Uo = 0 oflines through d that 
are tangent to the sphere for E < 0 and tangent to the upper 
sheet of the hyperboloid for E > O. This is easy to understand 
physically; infinitely large velocities are possible only when 
the potential is unbounded below, and this is not the case 
here. One also sees from the figures that any velocity inside 
the boundary corresponds under the projection to two points 
on the sphere or hyperboloid, although when (for E> 0) v is 
within an inner boundary formed by the intersections with 
Uo = 0 oflines through d asymptotic to the hyperboloid, the 
two points are on different sheets. 

The parameter p satisfies 

IIpl12 = ~ M2L 2 - (MoL)2 
2iEi L 2 _ q2 

= ~(2EL2Im+k2) (2.21) 
21EI L2-l . 

When E < 0, L 2 can be as small as q2 (radial motion) and as 
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large as ( - mk 2/2€) (circular motion), so that according to 
(2.21) 0< IIplI< 00. This means that the intersection of the 
sphere with each plane through the origin corresponds, un­
der either the stereographic projection (2.15) or the vertical 
projection (2.6), to a physical orbit and vice-versa. Such 
curves (the great circles) on the sphere comprise a manifestly 
SO (4), invariant set. When € > 0, L 2 can be as small as q2 
(vanishing impact parameter) and as large as infinity (infi­
nite impact parameter), so that in this case 1 < Ilpll < 00 • De­
spite the gap between lip II = 0 and Ilpll = 1, this describes an 
SO (3,1 )-invariant set, all planes that are orthogonal only to 
spacelike vectors. The intersections of these planes with ei­
ther a spacelike or a timelike hyperboloid comprise an 
SO (3,1 )-invariant set of curves. 

Actually our parametrization of these planes using p 
and n is singularwhenL 2 = q2 both because in this limit Ilpll 
becomes infinite, as just noted, and because the direction of n 
becomes indeterminate. The situation is not helped by re­
placingp withpillpil because the direction ofMXL is also 
ill-defined in this limit. The vector with a well-defined direc­
tion is (MxL)Xn, which satisfies 

(MXL)x n = L(kL'M + qM2) - M(kL 2 + qL.M) 

= (L 2 _ q2)( 2;q L _ k M)) 

=(L 2 _ q2)1. (2.22) 

When L 2 = q2, one should replace (2.11) by 

0= Uu Xl = or Xl. (2.23) 

This completes our explanation of the projections. Be­
fore turning to the concluding discussion, we want to point 
out one more amusing consequence of the basic definitions 
(1.4) and (1.8), of the conserved vectors Land M. As is well 
know, it follows from (1.4) that any orbit of this system must 
lie on a fixed cone because 

;·L= -q. (2.24) 

On the other hand the orbit must also lie in a plane because 
according to (2.18) we must have 

v'n = O. (2.25) 

Passing to the limit q = 0, we have, as far as we know, the 
fastest and the most direct proof that the orbits of the Kepler 
system are conic sections. 

3. CONCLUDING REMARKS-THE MANIFEST 
SYMMETRY OF THE QUANTIZED SYSTEM 

As observed in the Introduction, our stereographic pro­
jections of velocity space onto surfaces of manifest SO (4) or 
SO (3,1) symmetry appear not to have obvious quantum­
mechanical counterparts, in part because oflimitations built 
into the definitions of the projections and in part because of 
the difficulties in adapting velocity space, literally interpret­
ed, to the needs of Fourier superposition in the presence of 
nonzero magnetic charge. (And this in spite of the fact that 
degenerate eigenstates of the system are known to fill out 
complete representations of 0 (3,1) or 0 (4), as the case may 
be. 3--6) It may thus be productive to contemplate quantum­
mechanical alternatives to either "velocity space" or to 
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"functions on a surface of manifest SO (4) or SO (3,1) sym­
metry." We discuss a number of such possibilities in this 
section. 

1. When q is zero, "Fourier components" means eigen­
states of the free wave operator, which is also the Kepler 
wave operator with vanishing k. Thus the natural Fourier 
basis when q is nonzero might tum out to be the eigenstates 
of the q-Kepler wave operator with vanishing k, whose 
properties are derived in Ref. 3. This is suggested by trans­
formation (1.2) which establishes a classical correspondence 
between orbits of the free particle and orbits of the q-Kepler 
particle with k = O. 

2. According to Hurst, 15 in an appropriate gauge the 
action of the angular part of the q-Kepler wave operator on 
functions of the two-sphere is equivalent to the action of the 
group-invariant Laplacian on functions! q of SO (3) 
satisfying 

!q(geiSL,) =/iSq!q(g), (3.1) 

where g is an arbitrary element of SO (3), s is an arbitrary 
real number and L z generates rotations about the z-axis. Per­
haps, by analogy, the correct generalizations of the functions 
on S 3 (or its Minkowski-space analogue) in to which the mo­
mentum-space Kepler wave functions transform under the 
stereographic projections of Ref. 7 are functions on SO (4) 
[or SO (3,1)] satisfying an equivalence relation similar to 
(3.1). 

3. It may tum out that the dynamical symmetry of the 
quantized q-Kepler system is manifest only when the wave 
equations for several values of q are considered at once. Two 
facts prepare us for this idea. First, as mentioned in the In­
troduction, when an array of q's corresponds to the eigenval­
ues of some generator of a nonabelian Lie group, one can 
remove the Dirac string singularities from the Schrodinger 
equations of the array by application of an appropriate local 
nonabelian gauge transformation. Second, when q is zero 
and € > 0, one projects the momentum space wavefunction 
onto a function defined on both sheets of the hyperboloid,? 
even though the classical projection involves only one sheet 
at a time-upper for k < 0, lower for k> O. Thus, in a sense, 
even for q = 0 the quantum-mechanical dynamical symme­
try is manifest only when elements of more than one system 
are considered simultaneously. 

4. Finally, there is the possibility that there is some nat­
ural way to extend the naive projections to the velocities that 
are classically excluded and also to resolve the two-to-one 
ambiguities, but we have no concrete proposals along such 
lines. 
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The principal bundle of orthogonal frames over M4 is explicitly constructed from certain pairs of 

0(3,3). spin?rs that transfo~ as (associated) twistors under the action of the covering group of 
the Pomcare group. In partIcular, flat space-time is constructed from these associated twistors, 
and is thus shown to be an object derivable from geometric structures more basic than the vectors 
of M 4· Associated twistors describe massive elementary particles. The position in M4 of such a 
particle can be explicitly defined in terms of the components of these twistors. The usual 
momentum and angular momentum variables which coordinatize the classical phase space of this 
elementary relativistic system of nonzero mass and arbitrary spin may also be realized in terms of 
this pair of associated twistors. This realization is not equivalent to descriptions of massive 
particles using twistors which have previously appeared in the literature. 

1. INTRODUCTION 

It can be argued that the continuum concept of space 
and time initially arose not so much out of physical consider­
ations as from mathematical convenience. In fact, R. Pen­
rose and M. A. H. MacCallum· have suggested that the con­
tinuum model of space-time arises solely from its 
mathematical utility. They goon to say, " ... We take the view 
that to encompass quantum theory and general relativity 
satisfactorily one needs to do more than simply apply some 
suitable quantization technique to solutions of Einstein's 
equations. One should rather be thinking of quantizing spa­
cetime itself. This should not be conceived as simply replac­
ing the continuum by a discrete set of points (though this has 
been attempted) but rather as seeking a way of treating 
points as "smeared out" just as quantum theory smears out 
particles." To this end Penrose introduced twistors into 
quantum theory, and he and his co-workers developed the 
twistor formalism into an intriguing, albeit as yet incom­
plete, physical theory. 

An enunciated goal of twistor physics is to derive 
space-time from combinatorial principles applied to the 
group SU(2,2). It is widely believed that a necessary step 
towards the goals of eliminating the continuum from phys­
ical theories and the quantization of space-time is some such 
construction of M 4 , utilizing concepts more basic than space 
and time. In this paper we show that, not only M4 , but the 
principal fiber bundle of orthogonal frames over M4 may be 
constructed from certain geometrical objects that transform 
as twistors under the action of the universal covering group 
of the Poincare group. These twistors are intimately related 
to the real-valued spinors tP that transform under a real 

eight-dimensional irreducible representation of 0(3,3). 
[For brevity, we shall simply write "twistor" for the more 
precise "twistor with respect to the action of the universal 
covering group of the Poincare group." Also, throughout 

this paper "spinor" means a real eight-component 0,(3,3) 

spinor.] This construction is realized as follows. The set of all 

0,(3,3) spinors can be made into a real eight-dimensional 
vector space, which we denote as Ss. Nondegenerate spinors 
in Ss (see Ref. 3) characterize some of the properties of mas­
sive elementary particles. Every such spinor may be classi­
fied according to the type of intrinsic electromagnetic dipole 
moment possessed (in a rest frame) by the elementary parti­
cle that it describes. We shall formulate the construction of 
the principal orthogonal frame bundle over M4 in terms of 
the spinors that describe pure magnetic dipole particles 
(such as electrons), although many other choices are possi­
ble. Let Wbe the seven-dimensional subset of Ss in which 
these spinors lie (for a characterization of this set see Ref. 3). 
Consider Ss X Ss. There exists a submanifold V of Ss X Ss 
which is diffeomorphic to W XM4 • A point in V can be la­
beled by an ordered pair ofspinors (tP.,tP2) which are subject 
to four locally independent linear constraints and one other 
condition. This point determines an element of W XM4 , 

which in tum defines, by the canonical projection 
W X Mc+M4: (tP,x) !---+x, the coordinates of a point pEM4 
(with respect to some fixed but unspecified coordinate sys­
tem), and by the canonical projection W XMc+Wa nonde­
generate spinor t/JEWCSs' In Ref. 3 it is shown how one 
constructs an orthogonal tetrad eat!') form a nondegenerate 
spinor t/JESs. Hence the mapping W X Me. W: (tP,x) !---+tP de­
termines a tetrad comprising a basis of the tangent space at p, 
Tp (M4)' The set of points in V which give rise to x( p) gener­
ates the set of orthogonal frames over pEM4. Moreover, the 
composite map V~M4 is onto, so that this construction can 
be carried out for all pEM4, thereby realizing the principal 
bundle of orthogonal frames over M 4 • 

The organization of this paper is as follows. In Sec. 2 the 
submanifold VCSs X Ss is implicitly defined, and the diffeo­
morphism between Vand W X M4 is constructed; explicit 
formulas for the space-time coordinates x a and the orthogo­
nal tetrad eat!') in terms of the pair (tP.,tP2)E V are given. In 
Sec. 3 the interpretation of (tP., tP2)E V as a pair of twistors 
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associated to a point in W X M4 is discussed. It is shown that 
this pair oftwistors contains all of the information needed to 
specify the position, momentum, and angular momentum 
(spin + orbital) of a free massive particle moving through 

M 4 • 

We shall follow the notation of Ref. 3; a short summary 
of the notation and conventions of Ref. 3 is given in the 
Appendix. 

2. S8XS8::> V .... WXM4 

Let tPl,tP2ESS and put tP; =_(;;>, i = 1,2;A; ands; are real 
four-component spinors, and S; (- denotes transpose) 

transforms inversely to A; under SO(3,3) (see Ref. 3). De­
fine V = ! (tPl,tP2)ESs XSs: Eqs. (1)-(3) hold J, where Eqs. 
(1), (2), and (3) are given by 

A (A I,SI;A2,S2)S2 = 0, (1) 

A (S2,A.2;SI,A.I)A I = 0, (2) 

and 

t~1 = 0; t2rAI'I=O. (3) 

Here A is the real 4 X 4 matrix defined by 

A (A I,SI;A2,S2) = [~sll~,r] + + [A~I,r] ~ 
+ rAIA2 -Al"flr, (4) 

with [a,b ] ± = ab ± ba. ~ and rare real 4 X 4 skew-sym­
metric matrices (see Appendix) which verify [!~,!r] ~ 
= !E and cyclic permutations thereof, where E = ~r. Both 

Eq. (1) and Eq. (2) are SO(3,1) invariant, and the set ofEqs. 

(1) and (2) are 0(3,1) invariant. Equations (1) and (2) are to 
be interpreted as follows: One assigns nonzero values to A I 
and S2 consistent with Eq. (3), and then solves the resulting 
set oflinear equations for A2 and S I' Of these eight equations, 
only four are independent for a particular choice of AI and 
S2; this is shown below. Hence Vis an 8 +8 -4 -1 = 11 
dimensional manifold, which is also the dimension of the 
principal bundle of orthogonal frames over M 4 • 

The motivation behind Eqs. (1 )-(3) is as follows. Define 

(5) 

Equation (3) ensures that ¢EW(see Ref. 3). Equations (1) 
and (2) are equivalent to 

tPl= ~-~~axaA)' (6) 

and 

(7) 

where the xa are four real functions of (tPl,tP2)E V defined by 

(8) 

We use the suggestive notation x a for these functions because 
there exists a homogeneous transformation of tPl and tP2 
which "translates" x a (see Sec. 3), and hence the x a may be 
defined to be the position in M4 of the particle described by 
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(tPl,tP2)EV. Equations (6) and (7) are straightforwardconse­
quences of substituting Eqs. (65)-(68) of the Appendix into 
Eqs. (1) and (2), and using Eqs. (5) and (8), along with the 
fact that t2rA2 = t2rAI = lirA I' a result which follows 
upon multiplying Eq. (1) with t2r and Eq. (2) by Air. 
Equations (5) and (8) define the diffeomorphism 
V--+W XM4, while Eqs. (6) and (7) define the inverse map­
ping W X M4--+ V. The diffeomorphism defined by Eqs. (6) 
and (7) is implicit in Eqs. (1) and (2) and the definitions of 
Eqs. (5) and (8); this is the reason for defining Vvia Eqs. (1)­
(3). 

It is obvious that the mapping defined by Eqs. (6) and 
(7) is a bijection W XM4--+V, so that Vmust have the same 
dimension as W XM4 , i.e., Vis eleven-dimensional. There­
fore, as mentioned previously, of the eight constraints im­
posed by Eqs. (1) and (2), only four are independent for any 
given values of A I and S2; otherwise V cannot be an eleven­
dimensional manifold, which manifestly it is. 

The nondegenerate spinor tP ofEq. (5) determines an 
orthogonal tetrad ea 

(1-')' two linearly independent null vec­
tors na and fa, a spin tensor li~aP, and a scalar N. These are 
defined according to 

ea(l) = !'tr"rA = - !iinMa5tP, (9) 

ea(2) = !tr"A = - !iinMa6tP, (10) 

~aP = _ tSaPA = - !iinMaptP, (11) 

N = !trA = - !iinM56tP, (12) 

na = -A~r"A, (13) 

fa = - tr"~S' (14) 

ea
(3) = ~(na -f~ = - ~iir4rar7tP, 

and 

ea(4) = !<na + fa) = - ~iir4ratP. 

The ea 
(I-') satisfy 

ea(l-')e(v)a = N 21/(I-')(v» 

where 

1/(I-')(v) = diag(l,l,l, -1). 

(15) 

(16) 

(17) 

(18) 

These relationships are derived in Ref. 3; the matrices rA, 
M AB, and n are defined in Ref. 3, and also briefly discussed 
in the Appendix of this paper. 

To summarize: From the pair ofspinors (tPl,tPz)EVwe 
have extracted the coordinates xa(p) of a point pEM4 [de­
fined by Eq. (8)], and erected an orthogonal tetrad ea(l-') at 
this point. By varying tP while keeping x fixed, we generate 
the set of orthogonal frames over pEM4. Lastly, xa may be 
freely varied to give the orthogonal frame bundle over M 4 • 

3. TWISTORS 

The transformation properties of tP under 0(3, 1) are 

discussed in Ref. 3. As an example, for a SO(3,1) transfor­
mation, tPf--+tP' = exp! !lUapMaP J tP, where lUaP = - lUpa 
are six real parameters. We now endow tPl and tP2 with an­
other transformation property which enables us to define a 
left action on Vby the universal covering group of the Poin-
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care group. This additional transformation operation is 
translation. Define a real 4 X 4 matrix b by 

bE = Eb, (19) 

and 
- 4 ";I by = - r b. 

Then b may be uniquely written as 

b = baY', 

where the ba are four real parameters given by 

b a = !trY'b. 

Let 

T(b)= 
()b ~) , 

and 

T*(b) = (~ ;) t - I (b ) ( -or" _or") 

(20) 

(21) 

(22) 

(23) 

lar momentum JaP are completely determined by ("'I ,"'2)E V 
and a parameter m with dimensions of mass. They are de­
fined by 

va = IN 1-lea(4) (see Ref. 3), 

where 

vo.vG = -1; 

po. = mea(4)' 

where 

Papa = - m2N 2
; 

spin tensor = Ill: ap (see Ref. 3), 

where 

l:Grjvfl = 0, 

and 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(~ - br") 
1 . (24) and 

Under the translation operation on V, we define "'I and "'2 to 
transform according as 

(25) 

and 

(26) 

One easily verifies that translations commute with one an­
other, and that they have the correct commutation relations 

with the generators MaP of SO(3, 1) . Under this translation 
operation the x a transform as 

(27) 

This corresponds to one's intuitive notion of a translation in 
space-time, and reinforces the interpretation of the func­
tions defined in Eq. (8) as space-time coordinates. 

In order to distinguish the two types of translation 
transformation laws given by Eqs. (25) and (26), we call T (b) 
the representation of the translation generated by b, T *(b ) 
the conjugate representation, and say that "'I transforms as a 
twistor under translation, whereas "'2 transforms as a conju­
gate twistor under translation; of course both "'I and "'2 
transform in the same way under 0(3,1) . One additional bit 
of terminology: We say that ("'I ''''2)E V are the associated 
twistors of the element ("',X)E W X M4 defined by Eqs. (5) and 
(8). 

The associated twistors ("'I ''''2)EV provide a classical 
description of the kinematics of a free massive magnetic di­
pole particle, such as an electron. The particle's position r' in 
space-time, four velocity va, momentumpa, spin, and angu-
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JaP = lll:a
{3 + r'pfl- tJpa 

= ( -1i/4)(¢lflMap"'l + ¢2flMaP"'2)' 

J a{3 is invariant under the gauge transformation 
x a f---+x'a = xa + sva, sER. This may also be written as 

(36) 

x'a = xa(s) = xa(O) + sva, which is usually regarded as the 
equation of the trajectory of the particle moving in M 4 • With 
this interpretation of the allowed gauge transformation, we 
see that ("'I ''''2)E V provides a complete classical description 
of the interaction-free "dynamics" of a massive magnetic 
dipole particle moving in M 4 • 

An unsolved problem is to define equations of motion 
for "'I and "'2 which (i) preserve Eqs. (1)--(3), and give 
t2r AI = constant along a trajectory; (ii) yield xa a: ea (4) as 
an identity; (iii) admit nontrivial interactions; and (iv) quan­
tize this dynamical scheme. By quantization we mean, loose­
ly speaking, the construction of a representation of the gen­
erators of the dynamical symmetry group of the equations of 
motion in terms of Hermitian operators on an appropriate 
Hilbert space, assuming that such a symmetry group exists. 
(For a closed and isolated system, the equations of motion 
must admit the covering group of the Poincare group as a 
dynamical symmetry group.4) Once a quantum theory has 
been formulated, Eq. (8) takes on new meaning, namely, that 
the observable "space-time" is the expectation value of a 
quantum mechanical operator, which is in accordance with 
one of the axioms of quantum mechanics. 

APPENDIX 

Let", denote a real column matrix with eight rows (row 
indices are suppressed) which coordinatizes the real eight-

dimensional vector space Ss. 0(3,3) acts on Ss on the left as 
a group of automorphisms that preserves a certain bilinear 
form; '" transforms as a spinor under a real 8 X 8 irreducible 

representation of 0(3,3). Write 

(37) 
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where A and 5 are real four-component spinors. t ( - denotes 

transpose) transforms inversely to A under SO(3,3). 
Let Y' be a real 4 X 4 irreducible (Majorana) representa­

tion of the Dirac matrices, where 

and 

and 

Y'yfi + yfiY' = 2g<'P, a,/3,··· = 1,2,3,4, 

gaP = diag(I,I,I, -I). 

Define 

r = - ~! Eapl'v Y'yfiY'yV 

= -ylrryt, 
E= ytr, 

saP = - HY',yfiL. 
Then 

and 

yayt = - ytY', 
yaE = EY', 
sapyt = _ ytsaP, 
saPE = _ ES aP, 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

Let r A ,A,B,··· = 1, ... ,6, be six real matrices which gen­
erate an irreducible representation ofthe Clifford algebra C6 : 

rArB + rBr A = 2gAB, (48) 

where 

gAB = diag(l,I,I, -I, -1, -I). 

Define 

then 

and 
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r 7 1 rArBrCrDrErF = -EABCDEF , 
6! 

(r7)2 ~ 1. 

A particular representation of the r matrices is 

r"'= (-~Y' Y'E) 
o ' 

r S = (-~r Y'€) 
o ' 

r 6 = (~E -E) 
o ' 
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(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

and 

(56) 

The generators of SO(3,3) are 

M AB = -HrA,rBL; (57) 

in this representation the MaP are given by 

MaP = (S~P _ ~ap) . (58) 

The M AB verify 

[MAB,rR L = /j~rB - /j~rA, (59) 

[MAB,MRS] _ = gARMBS _gASMBR _~RMAS 

+ ~SMAR. (60) 

The skew-symmetric metric spinor of rank two, n, may 
be defined by 

(61) 

(62) 

and 

MABn = _ nMAB. (63) 

In the above representation n may be chosen to be 

-1) o . (64) 

In Ref. 3 the equivalent of 

- ytY'AtYayt = tA + sA - rtrA + rsAr (65) 

is proven; see Eq. (42) of Ref. 3. [To derive this identity, 
contract Eq. (~2) with Aq,Sr and add to the resulting expres­
sion - ytyt A.SY 4yt = A.s,] The transpose of Eq. (65) is 

- Y'ytsAytYa = tA +At + rtrA + rAtr. (66) 

From Eqs. (65) and (66) trivially follow the identities 

- YaytstY' = ytst - Estr, (67) 

and 

(68) 

'R. Penrose and M. A. H. MacCallum, Phys. Rep. 6, 241 (1973). 
21/1 denotes a real column matrix with eight rows; row indices are sup­
pressed. Greek indices run from I to 4; upper case Latin indices run from I 
to 6. The metric tensor on M4 has components gaP = diag(I,I,I, -I) in a 
Cartesian coordinate system. EABCDEF is the completely antisymmetric 
Levi--Civita tensor density of weight -I in six dimensions; E'23456 = +1. 
Eap,,,. = E a {Jp,'56' An index in parenthesis is a vector label. We put c = I. 

3p. L. Nash, J. Math. Phys. 21, 1024 (1980). 
4P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949). 
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Wit~ the aid of Penrose's conformal technique the asymptotic behavior of the components of the 
metnc tensor, the Weyl tensor, the Ricci tensor and the spin-coefficients is calculated for a large 
class of space-times that includes the NUT (Newman-Unti-Tamburino) solution as well as all 
asymptotically flat space-times. The calculations are done in a coordinate system associated not 
with null hypersurfaces but with an asymptotically shearfree twisting null congruence. For 
vacuum the results presented here reduce to those of Aronson and Newman to the order given in 
their paper. 

1. INTRODUCTION 

Almost a decade ago Aronson and Newman l investi­
gated the asymptotic behavior of the Newman-Penrose 
(NP) vacuum quantities,2 i.e. of the metric coefficients, the 
spin-coefficients and the Weyl tensor, for empty "asymptoti­
cally flat" space-times in what they called a type II coordi­
nate system. This coordinate system is based on a twisting 
asymptotically shearfree null geodesic congruence in con­
trast to the more common type I coordinate system which is 
based on null hypersurfaces. The asymptotic behavior in 
type II coordinates was derived, for the vacuum case, from 
the known behavior3 in type I coordinates by an asymptotic 

coordinate transformation. 
In this paper we shall generalize their results by remov­

ing the restriction that the space-time be vacuum near infin­
ity. Using Penrose's conformal approach4 we shall derive the 
asymptotic behavior of the NP quantities for this general 
case to higher order than obtained in Ref. 1, exhibiting ex­
plicitly the behavior of the metric. Penrose's conformal ap­
proach has been employed previously to obtain the asymp­
totic behavior in a type I coordinate system,5 thus 
generalizing results of Newman and UntV and also in ob­
taining "reduced equations" for exact solutions subject to 
special assumptions.6

,7 

There are several advantages in using this conformal 
'" approach where an unphysical space-time M (with bound-

ary f) is introduced whose interior is conformally related to 
the physical space-time M. The notion of the behavior of NP 
quantities at infinity becomes more meaningful. The coordi­
nate system and the tetrad are chosen at oF right from the 
outset; they do not have to be changed during the solving 
process as in the regular Newman-Penrose procedure.3 All 
"integration constants" are given directly in terms of quanti­
ties defined on oF. No integrations are involved, only differ­
entiations, and even these can be avoided to a large extent by 
making power series expansions and comparing coefficients. 
The conformal factor gives an extra degree offreedom which 
can be used to simplify the equations to be solved. 

The asymptotic behavior of the Ricci tensor compo­
nents need not be postulated separately. It follows from oth­
er more basic postulates on the space-times under investiga­
tion. One of these is that the space-time be asymptotically 
simple, but not quite in the sense ofPenrose.4 Penrose's re-

quirement that every null geodesic have two end points on oF 
is removed. Our basic assumptions are the following: 

1) The space-time is asymptotically simple in the weak­
ened sense just described; 

2) the conformal boundary consists in part of a null 
hypersurface oF+ with local topology S2XR,Vafl is a (non­
zero) null vector on oF+; 

3) the unphysical Weyl tensor vanishes on oF+; 
'" 4) the transformed Ricci tensor Rab is finite and smooth 

onoF+. 
These requirements are weaker than those of asymptotic 
flatness. They guarantee the proper local asymptotic behav­
ior, i.e., the proper "fall-off" properties, but the global be­
havior of the space-time in the asymptotic region may be 
completely different from that of Minkowski space. For in­
stance, the NUT (Newman-Unti-Tamburino) solutionS of 
Einstein's equation is included in the space-times under 
consideration.6 

The notation used is essentially the same as in Refs. 5,6, 
a~d 7. Careted quantities refer to the unphysical space-time 
M and those without carets refer to the physical space-time 
M. Superscripts on a careted variable denote the appropriate 
coefficient in the expansion of that variable in powers of the 
conformal factor fl; similarly, superscripts on an uncareted 
variable refer to the expansion of that variable in powers of 
rl. A dot denotes differentiation with respect to a or u. Re 
stands for real part, 1m for imaginary part. 

2. CHOICE OF FRAME AND COORDINATE SYSTEM 

In Ref. 5 we showed in detail how to pick the conformal 
factor fl and the tetrad! k a,fii",~a,naJ on th~ boundary oF+ 
in such a way that, on oF+, we have na = - Vafl and 

~o ,,0 fo ~o 0 P =7 =/L =V = , 
~ A. ~ 

iJ-l = - 13 0 = ~l) °lnP , 

2YO = - J20 = ilnP , 
(2.1) 

where P is an arbitrary real function on oF+. (Actually, this 
'" was done only for jjp = 0, but the generalization is immedi-

'" ~ ate.) The geodesics of M arriving at points on oF+ from the k a 

-?irec.!!ons were shown to be hypersurface orthogonal. Thus 
ka = Va a with the a = constant hypersurfaces cutting oF+ in 
2-surfaces with coordinates i 3 ,i4. Each geodesic could 
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therefore be labelled by the U,x3 and ~ coordinates of its 
intersection with .f+. The coordinate system {u,n,x3 ,x"4) is 

A . 

the type I coordinate system (for M) referred to in the Intro-
duction and its analogue for the physical space-time M is the 
one most commonly used when discussing asymptotic 
properties. A-

We obtain a natural frame in the interior of Mby propa­
gating parallelly the tetrad chosen on .f+ into the interior 
along each geodesic. The spin-coeffic!e~ts fUr J then ~anish 
identically. The metric componentsf, m, 5', U, and X' are 
defined by 

A [~a ~ _ A- a + $; a 
D= an' u-m an ~ ax;' 
A ",a a ~a 
.1= U-+ -+ X'- (i=3,4). an au ax; 

On .f+ they take on the values 

}o = -1, (;JJ = fJo = XiO = 0, 

j30 = _ ij40 = P(U,x3,x"4). 

The freedom left in the choice of tetrad, conformal factor 
and coordinate system is that of the Newman-Unti group. 
Requiring ap /au = 0, as we did in Ref. 5, reduces this free­
dom to that of the Bondi-Metzner-Sachs group. 

A type II coordinate system is introduced in a similar 
fashion. But first we must make a null rotation about fla at 
each point of.f+ so that in the new frame the shear 0- vanish­
es. Since the transformation formulas for tetrad changes are 
readily available in the literature, 1,5,7 they will not be listed 
here again. For the shear 0- the required formula is 

'" A """ A 

0-' = 0- + bf + 2b{3 + b 2( /1 + 2r) + b 3V - bAb - 8b . 

Let - L be a value of the parameter b for which u vanishes. 
Using Eq. (2.1) we have 

~ ~ A 

o = 0- + 8'L + L8'lnP + L 2.1 'InP , 

all quantities being evaluated on .f+. We also have the 
relations 
"....., ""'_ ""'" ---"",,, A. A./'. /'. 

D' =D-L8-L8 +LLA, 8' =8-LA, .1'=.1. 

Since it is the primed frame that is to be used exclusively 
from now on we shall, for convenience, drop all primes in the 
following. Some of the remaining spin-coefficients are given 
(in the new frame) by 

~ 0,,0 ~o y>~ - a A. =v =0, II = -2 = -lnP 
r- au' 

ro = p :u (LP-I), &0 = - po = {~lnP 
(2.2) 

and by 
A '" po = 8 °L - L81nP . (2.3) 

A 

To obtain a type II coordinate system {u,n,x3 ,x"4 J we 
take a point on the geodesic leaving a point S on .f+ for the 

'" ~ interior of M in the (new) k a-direction and label it by the 
coordinates (U,x3,x"4) of S. Again, the conformal factor 
serves as a fourth coordinate. The geodesic congruence just 
defined is no longer hypersurface orthogonal in general; in­
stead, it is asymptotically shearfree. The tetrad we have at S 
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is parallelly propagated along the g~esic through S, thus 
providing a tetrad at each point of M and makin~ the spin­
coefficients K,ft,E vanish identically throughout M. 

In a manner similar to what was done in the type I case 
the metric components are defined by 

'" ~ a ~ '" a ~. a 
D=[-, 8=m-+ 5'-., an an ax' (2.4) 
A ",a ~.a 
.1= U-+ X'- (i= 1,3,4), an ax; 

...... ~ A 
wherex l = U. SinceD, 8andA areknownon.f+(in terms of 
type I quantities) it is readily seen that 

A A. A A r= -1, (;JJ=UO=X30=X40=0, 

XIO=I, jlO= -L, i 30 = _ij40=P. 
(2.5) 

A ~ 

Again, D 2n = 0 on.f+ implies thatJ< I) = 0 and hence 

j= -1 +j(2)n 2+j(3)n 3+0(n 4). (2.6) 

Furthermore, choosing the conformal factor such that ...... 
Rep = 0, Eq. (4.2a) of Ref. 2 implies that Dp = O. Therefore, 
from Eq. (2.3) we see that the twist ~ (U,x3,x"4) is given in 
terms of P and L by 

A. A. 

- ip = ~ = Im(8°L - L(50lnP). (2.7) 

In summary, for a type II coordinate system and associ­
ated tetrad and conformal factor the following conditions 
hold. Equation (2.7) and the equations 

K=ft=E=O 
A. 

hold identically in M. The remaining spin-coefficients and 
the metric variables take, on .f+, the values given by Eqs. 
(2.2) and (2.5) and by an = O. Furthermore, by assumption, 

A 

the components of the Weyl tensor !/IABeD vanish on .f+, 
A 

where~ those of the tracefree Ricci tensor rp AB and the Ricci 
scalar A remain finite there. 

3. BEHAVIOR NEAR.F' 

The procedure for findinlkthe (careted) NP quantities 
for the unphysical space-time M is essentially the same as for 
the type I case.5 However, instead of evaluating n-deriva­
tives of various expressions at.f+ we find it easier to expand 
each variable in powers of n, substitute into the careted NP 
equations and compare coefficients. The equations we need 
here are the metric equations, the radial and nonradial 
"Ricci identities" [Eqs. (4.2) of Ref. 2] and the transforma­
tion equations for the Ricci tensor.5 The Bianchi identities 
are not required since they are essentially compatibility con­
ditions on the "Ricci identities." Only the metric equations 
will be exhibited here since they are different for each coordi­
nate system. The other equations will not be listed again due 
to their length and ready accessibility in the literature. 

From the commutator relations,2 applied to the coordi­
nates, we easily determine the radial metric equations to be 

AA. ""'. _. 

DX'- 75'- f5'=0, 
.................... "'A ~ A A A A-

Dm - 8[ - pm + (a + {3 If - ~(jj = 0 , 
/'.A """ A ~ A _ A 

DU - A[ - fjjj - Tm + (r + rlf = 0 , 

(3.1) 
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and the nonradial ones to be 
A~. ~A. ,.. A. " ,.. ~ ::. ,. 

85'- ~s' + (ji -p)X' + (f3 - ii)Si + (a _(3)Si = 0, 
A/'... _......... A A A /"'... 

80i - 8(1) + (;i - fl)f + (~- p)U 
A .............. _ 

+ (f3 - ii)Oi + (a - (3)&= 0, (3.2) 
......... ,... ,.. A . A,.. " A""""'" A ......... "'" 

Ll 5' - 8X' + (f - ii - (3)X i + (fl - y + Y)s i + AS ' = 0 , 
~ ,../'.. A" A,.. A 

Ll(1) - 8U - vf + (f - ii - (3)U 
::.."...... A ~ ......... 

+ AOi + (fl - Y + y)£1) = 0 . 
In lowest order we find, from the nonradial Ricci identi-

'" ties, ~pressions for the components of the Ricci tensor cp AB 

and A at f+ in terms of the spin-coefficients and their (non­
radial) derivatives, 

/">..0 2""""'0 ..... • cp 00 = ~, cp 01 = llf ~ - 2i~ fO, 
"'0 _ ~~ ~ ~ ~ cp 02 - a 7 + 7 (2ii - 7 ) , 

......... 0 AO'" ......... 0 ~ 
cp 12 = 28 'I, cp 22 = 2'1, 

lAo = Re[8°fO - fOfn -UOfO] , 
......... ......... A ~ A ,.. 

cp ~1 = - A ° + 8 °ao + 8°ao -4 aOao , 

as well as the two identities 

c5 00.. - do +Uoyo - yo~ = 0 , 

Im[c5°fO -UOfO] +4~YO = t . 

To first and second order we find 

/'-. /'-. ~ 

a(1)=O, f(1)= -i~fO-CPgp a(\)= -i~o-CP~o' f3 (1
)= -i~ftJ, 

,.. A'" "" A A......... A ......... 

yll)= -fOaO+tJao+AO-CP~I' A (1 )= -cp~o, fl ' \)= -2i~'1-2AO, 
AA ............. A" A A 

vll)=2'1tJ-CP~I' f (1 )=(J<!)=0, Si(I)=i~SiO, U ll)= -2'1, 

ji(l) = _ fOlio _ fngiO, cP~ = 0, 
A ""......... .........,. A. .... ......... .........0 
cp &? = 1JI~1) +4 i~CP gl - 4fD~ 2, cP b~ = - 8 0cp gl -2 aocp gl + i~CP 02 , 
cP\? = yo~ 2 - ~t + Re[ ~$il) - !gocP~o + (aO -2 ~cPgt] , 
......... ....................... ......... ,.. ......... 

CPW=8°(Ao-CP~I)+i~CP~2 -2'1CPgl' 

cPW=AO-4>~1 -2f°c5YO-2fogoyo, 
......... .,.. A......... It.. ......... A 

A 11) = ~~ -3 'I ~ 2 + Re[(aO +2 tJ)CPgl - ~8 0cp ~o _ !1JI~1)] , 
,-;;(1) _ ij(1) - -4 i~cP° + 2ilm [focP° +2 a~°cP° ] '1' 2 2 - 11 U 10 01 , 
$~l) = -2 g°c5°ao + gocP~o -4 ftJcP~o +8 ftJc5°ao, 
$~l) = c50;j!J -2 c5 0c50YO + (UO -3 fn)(;j!J -2 c50yo) , 

.A /'-. /'-. 

a(2 ) = - ¥/Ib11, f(2) = _1JI\1) - ~i~CPgl + ~2fO , 
a(2) = _ ~\1) + ~i~cP~o +~2(2~ _ !aO), P(2) = _ #,\1) + ~2ftJ, 

r(2) = Re[- ~$il) -2 YO~2 +~t + ~~cPgd + ilm[!c5°cPg1 + i~cP~1 +2i~aofD + !fDcP~o], 
A ......... _ A ......... 

A (2) =i~CP~o + !SOCP~o + aOcp~o , 
......... /'. A _......... .... ......... /'.. • 

fl(2)=i~(CP~1 -AO)+4'1~2+!SOCPgl -(ao+tJ)cpgl -rocp~o -~~, 

V(2) =c5°(cP~1 _.10) - !4>~0 + ~(AO - cP~l) + i~cP~1 +2YOcP~0 +2i~YO~, 
j(2)=!(~2_cp~), (J<2)=!cPgp gi(2) = _~2giO, 
UO ) =cP~1 _.10 , ji(2) = (i/2)tiOgO~ _ (i/2)ii06°~. 

Without having to go to second order in the nonradial equations we also obtain 
......... .................. A 

a(3) = -!lJI b2), a (4
) = - !(IJI~) + ~2IJ1bl) - !CP~lJIbl», 

a(5) = _!($&4) + i'2lP~) + j' 3lPb1» , 

i i(3) = _ li~CP (4)$ iO + 1$(1);;,0 
~ 6 oo~ 6 ° ~ , 

A ,. !!.. A ......... 

5 i(4) = ii~s iO( -!CP ~ + !i~ 3 - ii~CP i:/) + 125 iO(lJIb2) - i~lJIbl) , 

f~(3) - _ICP(5) 
- 3 00' 

(J<3) =1$(1) + ~OCP(4) + ~i~cP0 _ ~fD~ 2 
3 1 6 00 3 01 3 ' 

U(3
) = 2A (3) _ ~ +2 yo~ 2 + Re[$i1

) -2 fDcP~o] , 
%i(3) = _ iRe[t'0(fO~2 - roCP~ - i~cPgl _2$\1»], 
~(2) _ ~(3) _ 0 ~(4) __ 11,-;;(1)1 2 
'*'00 -'*'00 - , '*'00 - 4 '1'0 . 

(3.3) 

(3.4) 

(3.5) 

The transformation equations for the Ricci tensor determine the following asymptotic behavior for the components of 
the physical Ricci tensor, 
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lPoo = lP~!1 4 + lP i2!1 5 + 0 (!1 6) , 

lPOI = lP ~4?!1 4 + 0 (!1 5), lP02 = lP b"1!1 4 + 0 (!1 5) , 

lPll = lP W!1 3 + 0 (!1 4), lPl2 = lP \3j!1 3 + 0 (!1 4), 

lP22 = lP~2f!1 2 + 0(!1 3), A = A (3)!1 3 +0 (!14) . 

In addition, from lowest order, we find that 

cP~ = 4YOlP~ +12A (3), 
n.(3) _ -3A (3) n.(4) _ _ 1£0n.(4) 
'P II - ,'P 01 - 2U 'P 00 • 

(3.6) 

(3.7) 

'" '" In the next highest order these transformation equations give expressions for lP ~1 and A (2) which, when substituted into the 
second-order nonradial Ricci identities, yield the following relations between the "initial data"; 

.-;.. A ........... .... ........... A "" 

If/g) = 8°1f/\') + (2£lO -4 fJ)If/\I) +6iPlf/g) +3lPb"1 
A A A A ........... 

- !8 °8 °lP ~ - £lO8 °lP ~ + lP ~lP g2 , 
""':" A...................... A "" A 
If/\I) = 8 0lf/~I) -3 fJlf/~l) +6 'flf/\I) +2 lP \3j -48 0A (3) , 
"7' A........... A........... A "" • ,.. 
If/~I) = 8°1f/~') - (2fJ +2 a<»1f/~1) +6iPlf/~') -2A (3) +12iPA (3) +lPW, (3.8) 

cPi2 = Re[ - gogolP~ + (lao +4 fo)8°lP~ +12A (4) 

A '" '" +6iPlP ~ + lP ~(6A ° -2 lP ~ I)] . 

4. ASYMPTOTIC BEHAVIOR IN PHYSICAL SPACE-TIME 

Before we can discuss the asymptotic behavior of the NP variables in the physical space-time M we must introduce a 
suitable coordinate system in M. This is done as for the type I case. The conformal factor!1 is replaced as a coordinate by an 
affine parameter r along each null geodesic. The remaining coordinates Xl( = u), x 3 and X4 remain the same. Thus, 

Xi = Xi, !1 =!1 (r,x), (i = 1,3,4), 

where the function!1 (r,x) is yet to be found. The spin-frame {c1,LA J associated with {6A,tA J as in Ref. 5 does not correspond 
to a convenient tetrad since the spin-coefficient 11" does not vanish. Therefore, we rotate the tetrad at each point about k a with 
parameter c given by 

c = CO _ fj}2)!1 _ ~fj}3)!1 2 + 0(!1 3). 

Although CO is arbitrary a convenient choice is CO = fo since this will simplify several of the spin-coefficients. As in the type I 
case we find quite readily that 

(4.1) 

and with the aid of the transformation formulas in the Appendix of Ref. 7 the asymptotic expansions of all variables are now 
quite easily worked out in powers of r - I. The final results are 

2541 

"" ........... ........... ........... A-

If/o = r- 5 If/g) + r-61f/~2) + r- 7
[ If/~) - ~21f/~1) + ~lP~lf/bl)] + 0(r- 8

), 

If/I = r- 4(j\') + O(r- S), 1f/2 = r-3(j~I) + 0(r-4), 

1f/3 = r-2 (j~I) + 0(r- 3), 1f/
4 

= r- I (j~I) + 0(r-2), 

t i = f.o[r-' + i~r-2 + r-3GlP~ - ~2) + r4(~i~lP~ + ilP~ - i~3)] 

+ t(jg)j,or- 4 + O(r- S), 
A A.,.. ,. 

(U = fJ -lPg,r- 1 + ~-2( - !If/\I) + a8°lP~ _2fJ~2 +~8°~) + 0(r- 3), 
. ,.. _...........,.. 

X I = X 10 + r - 'Re[ jS' 10(1f/\') - !8 °lP ~ + fJlP bi/)] + 0 (r4) , 
A ""........... A. A:::::S 

U = 2'fr + (A ° -lP~1 + fJro) - r-IGIf/~I) + ~If/~I) -2A (3» + 0(r-2), 

K=E=11"=O, 

p = - r- I + i~r2 + (~2 -lP~)r-3 + r-4(i~lP~ - i~3 - !lP i2) + O(r- S), 

a = - !(j~l)r-4 - !(j~2)rS + r- 6 ( _ a(j~3) + ~2(jg) - ilPbi/(jb'» + 0(r- 7 ), 

'" A 

T = r- 3( - !If/\I) + a8°lP~ - !fJlPbi/) + 0(r-4), 

a = (aO - fo)(r-' - i~r-2) 

+ r- 3 UgolP~ + GaO - fo)lP~ +~2(fo - aO)] + 0(r- 4), 
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p = - &o(r- I + i.Ir-2) + r- 3( - !W~I) + &o.I 2 - !&ocP~) + 0(r-4), 
~ '" r = - 'f + r- 2(2A (3) - ¥Pi'» + 0(r-3), 

'" "" .... 1\. "" Jl = (r- I + i.Ir-2)(A ° - cP~1 + f>ro +2 i.I'f - i.I) - r-2(l/Ii') + 2A (3) + 0 (7-3), 

A = - !cP~6lr-3 + 0(r-4), 
'" ~ 

v = -2 t50YO + fO - r- I W~I) + 0(r-2), 

cPoo = cP~r-4 + cP~r-5 + 0(r- 6
), 

cPOI = (- !8°cP~ + f>cP~)r-4 + 0(r- 5), 

cP02 = cP~,?r-4 + 0(,-5), cPlI = -3A (3)r- 3 + 0(,-4), 

cPl2 = cP~~r-3 + 0(r-4), cP22 = cPWr- 2 + 0(r- 3), A =A (3,-3 + 0(r-4), 

where8° = - L (a/au) + p[(a/ax3) + i(a/ax4)] andl:,ao,f>,yo,f10 ,i1O ,A°,$gl ,$~1 ,ImW~'>,and W~')arel!:ivenin~s.(2.2), 
""A.""~ A. 

(2.5), (2.7), (3.3) and (3.5) in terms offunctions defined on .. P. The functions (on J+) P,L, I/I~I), 1/I~2), I/I~), 1/I~'),Rel/li'),cP~, 
cP ~,A (3 )are part of the initial data and are subject only to equations obtained from Eqs. (3.7) and (3.8) by replacing there cP ~i) 
by cP~i) - f>CP~,CP~,? by cP~,? - (f»2cP~ + f>8°cP~, andcP\~ by cPW -2 f>cPW. These changes are necessitated by the 
null rotation about k a made at the beginning of this section. 

In the vacuum case these expansions agree with those of Aronson and Newman I to the orders given there, up to changes 
in notation and a few minor misprints. If we expand the special solution derived in Ref. 6 in powers of r - I we again get 
agreement with the results of this paper. Moreover, these results can easily be, and have been, checked by direct substitution 
into the NP equations. 

The contravariant components of the metric can now be obtained from 

~b = k(anb) _ m(amb), 

where 

k a = (0,1,0,0), na 
= (X I,U,x3 ,x 4), ma = <s 1,{J),S3,S4), 

whence the covariant components are found to be 

gl2= 1 +0(r-4), g22=0(r- 6
), g23+ ig24=L/P+0(r-4), 

A ......... A. A A. "'" 

gil = -4'fr+2(cP~, -A o_f>ro) + r-'(I/Ii') + 1/I~1)-4A (3)+ 0(r- 2), 

g13 + ig14 = - rP -2 ~ (LP) +2LP -I($~I _1'0 - f>~) + iP -'(8°.I - .If» au 
+ r-Ip -I[ L (Wi') + Wi') -4A (3) + iW~') - ~°cP~ + if>cP~] + 0(r-2), (4.3) 

A --'" _A. /'... A 

g33 + g44 = P -2Re{ - ~ - r(2Lro +4LL'f} + cP~ _.I 2 +2 LL (cP~1 - A ° - f>ro) 
_A _;I"'.. ,,_A. 

+2 iL (8°.I - .If» + r- I[ !cP~ + iL (21/1~') +2 f>cP~ - 8°cP~) + LL (21/1~') -4A (3)] J + 0(r-2), 
• A /'.. A 1'\ 

g33 - g44 +2ig34 = P -2{ -2LLr +2 L 2(cP~1 - A ° - f>TO) +2 iL (8°.I -.If» 

+ r- I[ !W~I) + L 2(Wi') + Wi') -4A (3) + L (~W~I) - ¢ocP~ + ~f>cP~)] J + 0(r-2). 
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The Kundt class ofmetrics containing geodesic rays with vanishing divergence, shear and curl is 
obtained for more general Ricci tensors using the standard Newman-Penrose formalism. These 
solutions are then rederived using Penrose's conformal technique, thereby clarifying their 
asymptotic behavior. 

1. INTRODUCTION 

Two decades ago Kunde obtained a class of space­
times containing geodesic rays whose shear, twist and diver­
gence all vanish. The solutions were restricted by the condi­
tion that the Ricci tensor be proportional to I alb , where the 
vector 10 is tangent to the ray congruence. 

In this paper we generalize these metrics. We require 
that the Weyl tensor be algebraically special and that the 
Ricci scalar vanish, but do not, a priori, impose any further 
conditions on the Ricci tensor. Using the well~known New­
man-Penrose2 (NP) formalism we find, in Sec. 2, the spin­
coefficients, the metric coefficients, the metric, and the tet­
rad components (relative to a suitable tetrad) of the Weyl 
and Ricci tensors for such space-times for which the repeat­
ed principal null vector of the Weyl tensor is, at each point, 
tangential to a congruence of shearfree, twistfree, nonex­
panding null geodesics subject to one additional requirement 
(7 = 0) to be discussed later. The Kundt solutions, which 
include the plane wave vacuum solutions, are a special case, 
as shown in Sec. 3. 

The solutions found in this paper are, as usual, implicit. 
We derive the reduced gravitational field equations which 
together with the equations governing the source must still 
be solved before an explicit solution is obtained. In general, 
such equations, although few in number, are difficult to 
solve. Only in rare cases has this been done (cf. the explicit 
Robinson-Trautman3 type solution found by Foster and 
Newman).4 

In Sec. 4 we rederive our solutions with the aid of Pen­
rose's conformal technique.5

.
6 This technique has been used 

successfully on previous occasions for solving (both approxi­
mately near infinity and exactly) for space-times with ex­
panding rays. 7-9 To find solutions we transform to an unphy­
sical space-time if by rescaling the metric, solve the NP 
equations there and then transform back to the physical 
space-time M. The advantages of this method are as follows. 
The asymptotic behavior of the solution is built in from the 
start. At the very outset the coordinate system and the tetrad 
are chosen at "infinity" and need not be changed during the 
solving process as in the regular NP procedure. All "integra­
tion constants" have an obvious meaning, usually at "infin­
ity." Further, the conformal factor n gives an extra degree of 
freedom which can be used to simplify the equations to be 
solved. 

Our notation is basically the same as in Ref. 7. Careted 
quantities refer to the rescaled space-time if; those without 

carets refer to the physical space-time M. A zero superscript 
on a quantity means that this quantity is independent of the 
radial coordinate (r or n ). Ordinary differentiation is denot­
ed by a comma, but a dot is also used to denote differenti­
ation with respect to the coordinate u. Complex conjugation 
is denoted by a bar, symmetrization by round brackets 
around indices. Tensor indices are denoted by small Latin 
letters and usually run form 1 to 4 (except for i andj which 
run from 3 to 4 only). The usual symbols2

•
10 are used for the 

NP quantities. Parameters a, ¢J, c, and () refer, respectively, 
to boosts (referred to in the following as "rescalings") in the 
k-n plane of a standard null tetrad! k a, rna,ma,n° J ,to spatial 
rotations in the rn-m plane, to null rotations about k 0, and to 
changes of the conformal factor. The transformation laws of 
the NP variables for tetrad and conformal changes are found 
in Refs. 7 and 9, the NP equations are found in Refs. 2 and 
10. Because of their length these formulas and equations will 
not be repeated here. 

2. NP PROCEDURE 

In this section we derive the desired metric by employ­
ing the regular NP procedure/· II using a step-by-step ap­
proach to construct a special coordinate system with an asso­
ciated tetrad in which to present this solution. At each step 
we reconsider the freedom we have in the choice of such a 
frame and use it to simplify some quantity, thereby further 
restricting this freedom. 

As in Ref. 11, we begin by introducing a family of null 
hypersurfaces u = constant, and by choosing coordinates (u, 
r, x 3

, x 4
) as well as a null tetrad! k a, rna,ma,n° J ,such that 

gl2 = I, gil = gli = 0, (i = 3,4) 

dxo 
ko =u a , kO=-, 

. dr 

(2.1) 

(2.2) 

where r is an affine parameter associated with the null geode­
sics of the hypersurfaces. To satisfy the orthonormality con­
ditions, ko na = - rna ma = 1 with all other inner products 
vanishing, the vectors rn and n (i.e. {) and ..::1 ) must have the 
form 

£ a . a 
u = {U - + S / - (i = 3,4) ar axi 

(2.3) 

.. a a a 
.Ll =-+ U -+ x/-au ar axi ' 
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where the "metric variables" w, S i, U, X i are arbitrary func­
tions of the coordinates. 

With the aid of the transformation laws mentioned at 
the end of Sec. 1 we find that conditions (2.1)-(2.3) are left 
invariant by a combined coordinate and tetrad change given 
by 

u' = y(u), r' = y -I r + R (u, x,), xi" = xi"(u, xl) (i,j = 3,4) 

a2 = y, cp and c arbitrary, 

where y, R, and xi" are arbitrary functions of their arguments 
(with r> 0) and the parameters a, cp, and c were defined at 
the end of Sec. 1. For such a transformation the tetrad vec­
tors and the metric variables change as follows: 

k' = yk, m' = cyk + e2i<p m , 

n' = ccyk + ce2i<pm + ce - 2i<Pm + Y - 1 n , 

w' = cy + e2i<P(y-Iw + R.i Si), si" = e2i<P ~:: Si, (2.4) 

U' = ccy + ce2i<P(y-Iw + R.is') 
+ ce- 2i<P(y-l{i) + Roili) 

+ y-I(R + XiR.;) - rr- 3 y + y- 2U, 

Xi' = ce2'<P S i ax;' + ce - 2i<p l i ax;' 
ax' ax' 

+ y_1 (Xiaxi' + ax;,). 
ax' au 

From Eq. (2.2) and the fact that the vector k a is tangent 
to a null geodesic we find that the spin-coefficients must obey 

K=€+i=~ p=~ 7=~+~ 

Parallel propagation of the tetrad along the null geodesics 
leads to the further restrictions 

17=€=0 

on the spin-coefficients and 

Dc=Dcp=O 

on the tetrad freedom. Thus, the parameters cp and c for 
spatial rotations in the mom plane and null rotations about k 
must be independent of the radial coordinate r. 

So far the proceedings have been quite general except 
that we have arranged for the rays under discussion to be 
hypersurface orthogonal. Now we make the following 
assumptions: 

(i) the rays are shearfree (a = 0, and hence 1/10 = 0), 
(ii) the rays are non-expanding (p + P = 0, and hence 

p =0), 
(iii) the space-time is algebraically special (1/11 = 0), 
(iv) the Ricci scalar vanishes (A = 0). 

(There will be one additional assumption (7 = 0) made be­
low.) Due to the generality of the Ricci tensor the Goldberg­
Sachs theorem 10 is not applicable and conditions (i) and (iii) 
are independent. All four conditions are invariant under the 
coordinate-tetrad freedom described above. In summary, we 
have, so far, the following simplifications: 

K = a = p = € = 17 = A = 1/10 = 1/11 = 0, 7 = ~ + /3. 

The equations we need here are the radial and nonradial 
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"Ricci identities" (Eqs. 4.2 of Ref. 2) and the metric equa­
tions (Eqs. 6.10 of Ref. 11). The Bianchi identities are not 
required since they are essentially compatibility conditions 
on the "Ricci identities". It is now a straightforward matter 
to solve these equations. We find, for instance that 

a = aO
, /3=/30, 7 = 7°, A =A ° + rrJ>~o , 

Ji = Jio + r(f'D7~ - 2a°70) , (2.5) 

w = WO - 7
0r, S i = S iO, rJ>oo = ° . 

Before exhibiting the complete solution let us simplify 
further with the aid of our coordinate-tetrad freedom and 
one additional assumption. By means of the coordinate 
change 

u' = u, r' = r, ;' =; '(;, t,u) , 

where; = - x 3 + iX4, we makeS 3 + is 4 vanish atr = ° and 
hence, according to Eq. (2.5), everywhere. The coordinate 
freedom now has the additional restriction that 

;' = ;'(u,;). 

In the new coordinate system we define 

P(U,x3,X4)=S3(= _iS4) 

so that 

s'~= P(~+i~) = -2P~=PV. 
ax' ax3 ax4 a; 

By means of a spatial rotation the variable P can be made 
real, restricting our coordinate-tetrad freedom further by the 
requirement that 

ar ' e2i<p -~- = real. a; 
Under a coordinate change 

u' = u, r' = r + R (u,X i), ; , = ; 
accompanied by a null rotation about k, the variables wand 
J.i transform as 

w' =c +w +PVR, 

J.i' = 2c/3 + J.i + PVc, 

where c = c(u, x 3
, X4), R = R (u, x 3

, x4). Since w andJi are 
given by Eq. (2.5) we see quite readily that c and R may be 
chosen such that Jio and WO vanish. Our coordinate-tetrad 
freedom is now given by 

u' = y(u), r' = y-I r + R (u,;, t), ;' = ;'(u,;) , 

accompanied by tetrad changes with parameters restricted 
by 

a;' 
a2 = y(u), Dc = Dcp = 0, e2i<P a; = real, 

cy + e2i<P (PV R + Y - 1 7° R ) = ° , 
e2i<P (2c/3 ° + 2icPV cp + PVc) - R (f iO 7~ - 2a°7~ = ° . 

Our final assumption, 7° = 0, is invariant under this 
freedom and is, therefore, a geometrical condition. The solu­
tion of the NP equations now becomes 

K=a=p=7=J.i=€=17=0, 

4 = 4 0, a = aO, /3 = - (fl, y = yO + KOr, 

Garry Ludwig 2544 



                                                                                                                                    

v = - PVUo + rPV(yO + yo) + rPVKo, 

liJ=O, 5 i =5iO, Xi=X iO
, (2.6) 

U = UO - r(yO + jIJ) - rKo ,1/10 = 1/11 = 1/12 = 0, 

1/13 = y>V(yO + yo) -!pvA ° +211 0d> + rPVKO, 

1/14 = [ _ V(P2VU~ - A ° + A O(YO - 3'f) + ~ X oVA ° 
+ ~ XO VA O]r[V(p 2V(yO + jIJ» + KO VXO] 

+ rV(P2VK 0) , 

C/Joo = C/JOI = C/J02 = A = 0 , 
and 
C/J II = KO,C/J 12 = !PV(yO + jIJ) + !pvjO _2a0jO + rPVKo, 

(2.7) 

C/J22 = - p 2VVUO - A 0jO + rP 2VV(yO + jIJ) + rP 2VK ° , 
where 

aO=!VP, 5 30 =P= _i5 40, KO=PVVP-IVPI 2, 

A ° = - !VXO, yO - yo = l(VXO - VX~, (2.8) 

XO = _X 30 + iX40. 

ThevariablesP, XO, yO + yo, and UO are independent of 
the radial coordinate r and subject only to 

F= -lP(VXo+VX~+!XOVP+~oVP. (2.9) 

Equations (2.7) and (2.9) are the reduced equations which 
must be solved for P, XO, yO + yo, and UO before Eq. (2.6) 
represents an explicit solution. 

The contravariant components of the metric tensor are 
obtained, as usual from the relation 

g"b = k (anb) _ m(amb) ; 

herek a = (0,1,0,0), n a = (l,U, X 3, X4), m a = (O,O,P,iP). By 
inverting the matrix (g"b) we find the metric to be 

ds2 = !2U +!P -2 [(X 30)2 + (X40)2] I du2 -2 du dr 

_ P -2X 30 dx3 du - P -2X 40 dx4 du 

+ ~P - 2 [(dX3)2 + (dX4)2] , 

or, equivalently, 

dsz = 2U du2 -2 du dr + !P- 2
1 d; - XO dul 2

, 

(2.10) 

where U = UO - r(yO + yo) - rKo. It is now apparent the 
variable P defines the metric of the 2-surface u = constant, 
r = const. and that K ° is proportional to the Gaussian curva­
ture of this 2-surface. 

3. KUNDT'S METRIC AS A SPECIAL CASE 

It is not difficult to see that the vanishing of the tetrad 
component C/J II of the Ricci tensor is the necessary and suffi­
cient condition to enable us to make the variable P a constant 
(say 2 -1/2) by means of the remaining freedom. If, in addi­
tion C/J12 vanishes then the reduced equations become 

VXO + VXO = 0, (3.1) 

V(yO + yo - !VXO) = 0, (3.2) 

C/J22 = - !VVUo -11VXo12 . (3.3) 

The reason why C/J22 contains no longer the term linear in r, 
namely !rVV(yO + yo), is that by Eq. (3.2) we have 
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VV(yO + jIJ) = !VVVX, 

where the left side is obviously real and the right side pure 
imaginary according to Eq. (3.1). 

We intend to show that with the above specialization 
our solution reduces to that given by Eq. (3.9) of Kundt's 
paper. I If we let E = yO + yo and F = ~,'V X ° then, by Eqs. 
(3.1) and (3.2), Fis real and V(E + iF) = O. Thus E + iF is 
independent of - ;, i.e. of x3 - iX4, and is, therefore, analyt­
ic in X3 + iX4. The Cauchy-Riemann equations now show 
that E and Fare harmonic in X3 and X4 and that there exists a 
real function b O(u, X3, x4

) such that 

E = !b ?3 and F = -!b?4 . 

Note that XO is also determined by b ° according to 

axo -I'b o a; - 'i' .4' 

Therefore, we take the real variables b O(u, X3, x4
) and 

U O( u, X3, x4
) as our undetermined variables, subject, howev­

er, to Eq. (3.3) and to b ?33 + b?44 = O. 
To get agreement with Kundt's solution we must first 

perform the following change of coordinates (which will, of 
course, violate some of our conditions): 

u=u', r=r'+R(u',;',['), ;=;'. 
With R chosen so that V R = X ° + b 0, the metric and Eq. 
(3.3) become, respectively, 

ds2 = H dU,2 -2 du' dr' + Id;' + bO du'l z , 

-4C/J22 = VVA ° + (2bOa~3 + b?3 +2 :u )b?3 - (b?4)2, 

where 

H=Ao-b?3 r' , 

and the variable A 0, defined by 

A ° = 2Uo - aR + XO XO _ b ° R au' ,3 , 

is independent of r and replaces UO as undetermined 
variable. 

A further change given by r'-+ - r' and X3 -+ - X3 now 
yields Kundt's solution except for an unexplained difference 
in the numerical coefficients of (b,3)2 and (b. 4 )2. 

4. CONFORMAL APPROACH 

In this section we employ Penrose's conformal meth­
od5

,6 to rederive the metric found in Sec. 2. The advantages 
of this technique have been discussed in Sec. 1 and in pre­
vious papers.7

-
9 

It is well known 12 that in Minkowski space null geode­
sics lying in parallel null hyperplanes all end up on one and 
the same generator N of (conformal future null infinity) 
J + , with all the geodesics of a particular null hyperplane 
reaching the same point S of N. These null hyperplanes are 
actually null cones whose vertices lie on N and for which N 
is, in fact, one of the generators. 

With this in mind consider a space-time which has as 
(part of) its conformal boundary a line N on which the con­
formal factor n vanishes and on which van #0. At a point 
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Son N consider the null "cone" generated by all the possible 
null geodesics arriving at S from the interior of the rescaled 
space-time M. Each such null geodesic has a tangent vector 
k a defined up to a proportionality factor which depends on 
the geodesic. Corresponding to each geodesic choose at S 
another null vector fl a satisfying the conditions fla k a = 1 
and 

'" I o~ ~ Va f} fl~O =K ka -na (4.1) 

for some function K ° also depending on the geodesic. (In 
general, the null vector fl a depends on the geodesic. Only 
when N is null will fl a be the same jor all null geodesics 
arriving at S; it will then equal - Van and point along N 
just as in the Minkowski case.) Arbitrarily choose a complex 

.......... ..... ""......, "" null vector m a such that i k a, rna, ;na, fla) form a null tetrad. 
This gives us many null tetrads at S, one for each geodesic 
arriving t~ere. Propagate these tetrads parallelly into the in­
terior of M along their respective geodesics. For each point 
in the interior (at least near N) we now have precisely one 
tetrad defined there. The spin-coefficients K, E ,1T vanish 
identically. 

Let us now consider the freedom in the choice of tetrad 
and conformal factor. We can, at a point P, 

(i) rescale the tetrad with parameter a depending on the 
geodesic on which P lies, provided this is accompanied by a 
conformal rescaling n ' = (In with (J = 0

2
; 

(ii) make spatial rotations with parameter f/J depending 
on the geodesic; 

(iii) conformally rescale with parameter (J , where (J_ I 
as n-o, provided this is accompanied by a null rotation 
about k a with parameter c satisfying the restrictions 

'" " Dc + 8(J= 0, 

c-o as n-o. 
Since ka is ~ear1y hypersurface orthogonal it must be 

proportional to Va U for some function u which labels ~he 
hypersurfaces. We can use freedom (i) above to make ka 
equal to this gradient so that 

ka = Va U, 

-:::::- .......... A 

P = p, f = a + (3. 

Freedom (i) is now restricted by 

u' = y(u), (J = y(u) , 
but freedom (ii) and (iii) remain unaffected. 

(4.2) 

A hypersurface n = consti=O cuts a u = const hyper­
surface in a 2-surface on which we select two coordinates x 
and y subject to 8";- = 0, where ;- = - x + iy. Propagate 
these along the geodesics to obtain a coordinate system 

(xa
) = (u,n, x, y) . 

The freedom in the choice of the coordinate; is _ A. 

2546 

(iv);' =; '(;, ;,u) restricted by 8;' = O. 
From Eq. (4.2) it follows that 

~ '" -" 8u = maVa U = 0, 

Ju = navau = 1, 
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and from Eq. (4.1) that for any of the tetrads at S, 
.A ~ '" Dn = kaVa n = - 1, 

In = ;;;aVa n = 0, 

In=naVa n=KO. 
Also clearly, 

'" . Dx{=O. 

Hence we have 

A. a ~ ",a ~a 
D=!.:ln,8=w-+S'-. 

vu; an ax} , 

J=~+[j~+ii~, 
au an ax' 

with]- -= 1:.-.,~).... U~K >s n-o, thus defining the metric 
variables/, w, s', U, and X'. 

Note that on the 2-surface used to define the coordi­
nates x and y, the relation 

[3 = _ i[4 

holds since 8'; = O. Further, the coordinate freedom (iv) 
may now be written 

(iv) ; I = ; '(u, ;). 
Having set up our coordinate system and tetrad in a 

fairly general manner we now state our major assumptions. 
We assume that the null geodesics considered above are not 
only hypersurface orthogonal but also shearfree and expan­
sionfree and correspond to a repeated principal null direc­
tion of the WeyJ tensor, i.e. 

a- = ,po = ,pI = 0, 
~ - f~n-l p- - . 

(Two more assumptions will be stated shortly.) The last 
equation follows from the assumption made that p vanish 
and the transformation law7 for p under a conformal rescal­
ing. The above conditions are invariant under freedom (i)­
(iv) in the choice of frame (i.e. of coordinate system, tetrad 
and conformal factor). With the aid of freedom (iii) we can 
arrange that 

p=n- I
, ]= -1, 

thereby restricting freedom (iii) by 

(J = (l + Rn) - I, 

where R = R (u,x, y) is arbitrary. 
The condition 

f=O 

is invariant under the remaining freedom. We shall assume it 
to hold as well as the vanishing of the Ricci scalar, i.e., 

A =0. 

Applying the commutator2 relations to the coordinates 
the metric equations result. Two of these, namely 

A/".. ~\/"o... Dw =n w, 
(4.3) 

are easily solved. Taking into account that W'must approach 
zero as n does, we find 

[;; = 0, 
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ti=n-lt iO . 

Let us define a function 

P(u,x,y)=t 30(= _it4~, 

so that 

Ei~ =n -Ipv 
~ axl ' 

where 

V= -2~ = ~+i!..... 
a; ax ay 

We arrange for P to be real by means of freedom (ii). 
To summarize, with respect to the frame we have con­

structed, the following hold: 

U-Ko as n-o. 
Let us list once more the remaining freedom in the 

choice of coordinate system, tetrad, and conformal factor. 
We can 

(i) change the u-coordinate by u' = r(u) provided we 
also change the conformal factor by n ' = () (u)n with () = r 
and rescale the tetrad with a2 = (); 

(ii) change thex andy coordinates by; , =; '(u, ;)pro­
vided we also make a spatial rotation with parameter 
tP (u, x, y) subject to 

ar ' 
e2i</> -~- = real, a; , 
(iii) make a conformal change n' = (}n accompanied 

by a null rotation about k ° with 

(}=(l +Rn)-I, c= -n(1 +Rn)-l PVR, 

where R (u,x ') is arbitrary. 

The remaining metric equations 

15U=r+r, 

15X/=O, 

8U=$, 
r.. ~ 

It = It, 

8X/ _iti =1(i + ([1- r+ y)t;, 
.0..,.. AA A .... A. .a. A 

8t i - 8t' = (f3 - a) t / + (cz - (3) t / 

(4.4) 

together with the Ricci identities [Eqs. (4.2) of Ref. 2] and 
the transformation equation for the Ricci scalar [the last of 
Eqs. (1.5) of Ref. 7] can now be solved in a straightforward 
manner. It turns out that p- n -I U is independent of n 
and can be made to vanish with the aid of freedom (iii), 
which now becomes further constrained by 

VVR =0. 

The results of this calculation are 
,.. A ,. A ,. "'" A. 

K = (T = r = E = 7r = (U = 1/10 
A. A. A. "'" 

= 1/11 = 1/12 = <Poo = <POI = 0, 

p=n-l, a= -p=n-IaO, 
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i = A 0, r = uOn - yo , 
p= _ uon +"o+yo+n-IKo, 

v = n -lpvKo + PV("o + ro> - npvuo, 

fA_ 1 Ei_n-1kiO XAi_XAiO 
--,~- ~', -, 

U= -uon 2+("o+ro>n+Ko, 

$3=n -2pvKo+n -I [!PV("o+ ro> 

_ !PVA ° +U 0d>] , 
r.. 

I/I~ 

(4.5) 

= n -2V(p2VK") + n -I [V(P 2V("o + ro»] - U °Ko 
_ V(p2VU~ + A O(YO _ 3y» _ A 0+ !X°VA ° 
+ !-i0VA 0, 

X = -!n-I("o+ro>+ uo, 

$02= -n-I,.ro, 4>11 = _~-I("o+ro>, 
A. __ --

<P12 = PVUo + n-I[!pvA ° - !PV("o + y» -2a°A OJ, 
A. _ _ - • 

<P22 = n -2p 2VVKo + n -I [P2VV("o + ro> - KO 

+!XoVKo 

+ !-i°VKO] 
+ [-P 2VVUO-YO-YO 
+ ! XOV("o + yo) 
+ !-i°V("o + ro> - A 0,.[0] 
+ncUO-!XoVUo 

-!XoVU~, 

wherethevariablesaO,tiO,KO,A 0,,,0 - yo,Xo are defined as 
in Eq. (2.8). The variables P, XO, ,,0 + yo and UO again have 
to satisfy Eq. (2.9) but are otherwise left arbitrary. 

The metric is easily obtained in standard fashion from 
the metric coefficients. The result is 

d§2 = [2U - ~P -2n 2«X3~2 + (X4~2)] du2 -2 du dn 

+P -2X 30 n 2du dx3 +P -2X 40 n 2du dx4 

-!p -2 n 2 [(dX3)2 + (dX4)2] . (4.6) 

The meaning of the function P now becomes clear. It is 
the metric of a u = constant, n = constant 2-surface. If K ° 
vanishes we can, as in Sec. 2, use the remaining freedom to 
set P equal to a constant. 

Let us now convert back to the physical space-time M. 
We first introduce coordinates 

(XD) = (u,r, x, y) , 

where r is an affine parameter for the geodesics, determined 
as follows: 

an = Dn = n 215n = _ n 2 • ar ' 
hence n = r - 1 by a suitable choice of origin. 

The transformation formulas for the spin-coefficients 
and the tetrad components of the Ricci and Weyl tensors are 
given in Ref. 7 by, respectively, Eqs. (A5). (1.5). and (1.6). 
For the metric coefficients the required transformation laws 
are 
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u=n -2j-1 (u- an _ xian). 
au ax' 

After some calculation we find the solution given by Eqs. 
(2.6}-(2.1O) of Sec. 2. Since gab = n 2gab the metric (2.10) 
can be obtained more directly from Eq. (4.6). 

5. CONCLUSION 

To summarize, we have generalized a class of metrics 
first discovered by Kundt many years ago. These metrics 
describe a class of space-times containing geodesic rays 
whose divergence, shear, and curl all vanish. By assumption, 
the Ricci scalar vanishes, but the Ricci tensor is otherwise as 
arbitrary as the field equations allow. Since the Goldberg­
Sachs theorem is no longer applicable we made the further 
simplifying assumption that the rays in question correspond 
to repeated principal null directions of the Weyl tensor. 
Therefore, our solutions are all algebraically special. 

These solutions were derived in two ways, first by using 
the standard Newman-Penrose formalism, second by using 
a conformal approach. The advantages of the conformal 
method were discussed in Sec. 1. Both methods have the 
advantage that they yield not only the metric but also, at the 
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same time, the components of the Weyl and Ricci tensors 
(relative to a specially constructed tetrad). 
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(Received 17 July 1979; accepted for publication 2 November 1979) 

The Green's functions for a cubic lattice given by 
G(E) = Ihr3 fo"fo"fo" (dxdydz)/[E - w (x,y,z)], 
where 
(i) w(x ,y ,z) = (a 1cosx + a2cosy)(1 + cosz) + a3cosz , 
(ii) w(x ,y ,z) = a1cosx (1 + cosy + cosz + cosycosz) + a2cosy + a3cosz + a23cosycosz 
are evaluated exactly and expressed as products of two 2Fl's each of which represents a complete 
elliptic integral of the first kind. The expressions for the Green's functions manifest the expected 
symmetries. 

I. INTRODUCTION 

On account of their application in several physical 
problems, many authors have considered the analytic evalu­
ation of the Lattice Green's functions for different types of 
cubic lattices. 1-6 Hioe, in a recent paper,7 has summarized 
the various cases that have been considered in the past. He 
has also evaluated the special Green's function 

G(E;a
1
,a

2
,a

3
) = ~ rr rIT 

(" E dXd~dZ ) , (1) 
1T Jo Jo Jo - (U x,y,z 

where 

(U(x,y,z) = (a 1 cosx + a2 cosy)(1 + cosz) + a3 cosz (2) 

and 

E>2a 1 + 2a2 + a3 • 

Hioe has expressed his answer as a product of two com­
plete elliptic integrals. However, the obvious invariance of 
the Green's function under the transformations involving 

change of sign of a 1 and/or a2 and interchange of a 1 and a2 is 
not manifest in this expression. In the present paper, we at­
tempt this problem in a very simple and straightforward 
manner which immediately results in an expression for the 
Green's function in terms of an F4 function of Appell. The 
parameters of this Appell function are such that it factorizes 
into two 2Fl 's each of which can also be written as a com­
plete elliptic integral, though, the first factorization looks 
better. In addition, since our procedure retains the above­
mentioned symmetries at every stage, our final answer mani­
festly exhibits the desired symmetries. 

We have also given a simple analytic expression for the 
Lattice Green's function corresponding to 

(U(x,y,z) = al cosx(1 + cosy + cosz + cosy cosz) 

+ a2 cosy + a3 cosz + a23 cosy cosz, (3) 

which is a generalization of the case previously considered 
by Glasser (His case is obtained by taking a 1 = O 2 = a3 

= a23 = 1). 

II. COMPUTATION OF THE LATTICE GREEN'S FUNCTION CONSIDERED BY HIOE 

We perform the z-integration in Eq. (1) using8 

(" dz 1T 

Jo a + b cosz = (0 2 _ b 2)112' 101 > I b I, (4) 

which results in 

1 itTitT dxdy G (E;0I,02,a3) = - 1/2 
~ 0 0 [(E + 03)(E - a3 - 2a 1 COSX - 2a2 cosy)] 

= 1 f (1/2)n + m ( 2a 1 )n ( 2a2 )m 
(E2 - o~ )112 n,m =0 n!m! \E - 0 3 \E - 0 3 

(5) 

1 i"i" X - cosnx cosm y dx dy. 
~ 0 0 

(6) 

Since 

1 itT - cos2n + 1 X dx = 0, 
1T 0 

and 

1 i" 2n (1/2)n - cos xdx= ---, 
1T 0 n! 

(7) 

where 
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(i)(a)n = r(n + a)/r(n), 

and 
(ii) n is a nonnegative integer, Eq. (6) becomes 

G(E' ) _ 1 L'" (1/2)2n + 2m (1/2)n(1/2)m ~2a1 )2n ~2a2 )2m ,a l ,a2 ,aJ - --- ---
(E 2 _ 2)n (2 )'(2 )" ,_ . a J n.m ~ on. m .n.m. a J - a J 

Applying the duplication formula9 

r(2z) = 22z - 1 r(z)r [z + (1/2)] 
11"112 ' 

to the above equation, we arrive aeo 

G (E;a l ,a2 ,aJ ) 

1 ! (1/4)n + m(3/4)n + m = { 20 1 )2n { 202 )2m 
(E 2 - ai)1I2 n,m ~ ° n!n!m!m! \.E - aJ \.E - a J 

F4 (a, b + c - a-I; b,c; u(1 - v), v(1 - u» = 2FI (a,b + c - a-I; c;u) 2FI (a, b + c - a-I; c; v). 

The use of the above result transforms Eq. (12) to 

where 

u= [[(E-a J +201 +2a2 )(E-aJ +201 -202)]112- [(E-a J -201 +2a2 )(E-aJ -201 -2a2)r12 ]2, 

2(E - a J ) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

v = [ [(E - a J + 201 + 2a2 )(E - a J + 201 - 202)]112 - [(E - a J - 201 + 2a2 )(E - a J - 201 - 202)]112]2 (15) 

2(E - a J ) 

Since 
(i) u and v are invariant under change of sign of a 1 and/or a2 , 

(ii) a 1 +-+{l2 ~u-v, and 
(iii) the two 2FI 's in Eq. (14) above have the same parameters, the analytic expression for the Green's function 

G (E;a l ,a2 ,aJ ) in Eq. (14) above obviously contains the symmetries mentioned in the introduction. 
Noting that l2 

F (IJ'I')-(1 Y-)-1I2F(ll'I' 2Y~) (16) 
2 1 \4'4' ;z - + z 2 1 2'2' , 1 + Yz ' 

we observe that each of the two 2FI 's appearing in Eq. (14) can be expressed as a complete elliptic integral, though its 
argument is not any simpler. 

Our expression for the Lattice Green's function and its derivation may be compared with the ones in Hioe's work7
• 

Special cases: 
(i)a 1 =a2 =aJ = l,then 

u=v= 

and 

2550 

(
Y (E +3) - Y (E -5) )2, 

2Y (E -1) 
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In particular 

1 
G(5;1,1,1) = --_ [2FI (M;q)] 2 

2V6 
1 [ r(l/2) ]2 

= 2V"6 r(5/8)r(7/8) 

1 [r (l/8)F (3/8) P . 
(ii) 16V 6~ 

(18) 

(19) 

When al-->-O, the first 2FI---+l, whereas the second one diverges. Thus G (2a 1 + 2a2 + a3 ;a l ,a2a3)-00 as al-->-O. The above 
result and the results in Eqs. (17-19) are the same as previously obtained by Hioe. 

III. LATTICE GREEN'S FUNCTION FOR 
GENERALIZATION OF A CASE CONSIDERED BY 
GLASSER 

In this section, we wish to compute 

G(E;a
l
,a2,a3,a

23
) = ~ ITT[ ITT dxdydz , 

~ Jo 0 Jo E - w(x,y,z) 

where 

w(x,y,z) = a l cosx(1 + cosy + cosz + cosy cosz) 

+ a2 cosy + a3 cosz + a23 cosy cosz, 

and 

E>4a 1 + a2 + a3 + a23 · 

Performing the z-integration, we obtain 

G (E;a 1 ,a2 ,a3 ,a23 ) 

=~ I
TT
[dXdY [(E+a3 -(a2 -a23 ) cosy) 

"r Jo 0 

(20) 

(21) 

(22) 

X (E - a3 - 2a 1 COSX - cosy(a2 + a23 + a l cosx» ]-112 

(23) 

To do the y-integration, we take cos y as the new vari­
able and use\3 

f d 
u V (a - x)(b - X~(C - x)(x - d) 

2 
= F(y,k), 

V (a-c)(b-d) 

where a > b > c > u >d and 

(
.) . -I [(b-d)(C-U)]1/2 
1 y=sm , 

(c-d)(b-u) 

(ii)k= [(a-b)(C-d)]1/2, 
(a - c)(b - d) 

and 

(24) 

(25a) 

(25b) 

(iii) F (y,k ) is in general an incomplete elliptic integral. 
In particular, the complete elliptic integral F (rr /2,k ) is ex­
pressed as l4 

2551 

F(1T/2,k) = ~1T2FI (M;I;k 2). 

Since in our problem 

a= 
E+a3 E - a3 - 2a 1 COSX 

, b = ---.:.....--.:.-­
a2 + a23 + 2a1 COSX' 
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(26) 

(27) 

and c = - u = - d = I, we find y = 1T 12 and 

G (E;a I ,a2,a 3 ,a23 ) 

1T[(E-a2 +a3 +a23 )(E+a2 -a3 +a23 )]112 

X iTT dx 2FI (H; l;k 2), (28) 

where 

k 2 = A + B cosx, 

and 

(29) 

4a 1(E+a2 +a3 -a23 ) 
(ii)B = ------------­

(E-a2 +a3 +a23 )(E+a2 -a3 +a23 ) 
(30b) 

The integral in Eq. (28) can now be evaluated by inte­
grating term by term the series expansion of the hypergeo­
metric function, using contour integration techniques. This 
results in 

G(E;al ,a2,a3,a23 ) 

[(E-a2 +a3 +a23 )(E+a2 -a3 +a23 )]1/2 

I
'" (!)n + m(!)n + m 

X (A )n (A)m (31) , , , , + -, 
n.m = 0 n.n.m.m. 

where 

A ± = !(A ± (A 2 _ B 2)112). (32) 

On using the definition of Appell's F4 function \0 and 
Bailey's theorem, II we arrive at 

G (E;a I ,a2 ,a3 ,a23 ) 

[(E-a2 +a3 +a23 )(E+a2 -a3 +a23 )]1!2 

XF4 (M;I,I;A + ,A _) 

[(E - a2 + a3 + a23 )(E + a2 - a3 + a23 ) ]1!2 
X 2F I (M;I,I;u) 2FI (M;I;v), (33) 

where 

u(l - v) = A +, v(1 - u) = A _ , (34) 
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or 

u = ! {t + (A 2 - B 2)112 _ [(1 _ A )2 _ B 2] 1/2}, (35a) 

and 

v=!{I_(A 2_B Z)1I2_ [(I_A)]Z_B2}1I2. (35b) 

Note that the expression for the Green's function in Eq. 
(33) above obviously possesses symmetry under (i) change of 
sign of aI' (ii) interchange of az ,a3. 

Special cases: 
(i) When a l = az = a23 = 1, we find 

442 
A= , B= , A±= -----

E + 2 - a3 E + 2 - a3 E + 2 - a3 

(E+2- aS/2 -(E-6- a3)112 
u=v=![l-(l-2A)II2]= 2(E+2-a

1

)1I2) , 

and 

In particular 

G (E;I, 1, 1,1) 

--- F 11·1· ~~~--~----"--1 [ ( (E + 1)112 - (E _ 7)112)]2 
(E + 1) 2 I 2'2' , 2(E + 1) 112 

which is exactly the expression obtained by Glasser. 5 

(ii) When E----+4a 1 + az + a3 + aZ3 ' 

(40 1 + a2 + a3 + a23 )a23 + a2a3 
A~ , 

(2a l + az + aZ3 )(2a 1 + a3 + a23 ) 

201 (20 1 + a2 + a3 ) 
B~-----~~~--------­

(20 1 + a2 + aZ3 )(2a 1 + a3 + a23 ) 
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(37) 

Thus 

A +B~l, u~Hl +(1-2B)II2], v~Hl-(1-2B)II2], 
with 

In particular, when a l = a2 = a23 = 1 [case (i) above], 
and E~6 + a3 , A = B~ 112, u = v~ 112, and 

1 
G(6 +a3;1,I,a3,1)~ 112 

4(3+a3) 

1T X[ F(ll·l·(l)]Z-
2 I 2'2' , 2 - 4(3 + a3)II2[r(3/4)]4' 

using Eq. (2.8(50», p. 104, in Ref. (12). 
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Let P (M4,G) be a principal fiber bundle over the Minkowskian space-time M4 with the structural 
group G. The group G is supposed to be a compact and semisimple Lie group. Let A be a 
connection form on P (M4,G) and F = DA its curvature form. LetgG be the Cartan-Killing metric 
on G, andgM • the Minkowskian metric on M4. Let us define d1T : TP_ TM4, the differential of the 
canonical projection from Ponto M 4 • Then we can define a scalar product for any two vectors 
from P(M4 ,G): 

gp(X,Y) = gG(A (X),A (Y» + gM. (d1T(X),d1T(Y». 

In this metric the horizontal and vertical subspaces of the connection A are orthogonal to each 
other. Next, we construct the Clifford algebra corresponding to the metricgp • The metricgp can 
be always diagonalized locally to give diag( (3 + N) + ,1 - ), where N is the dimension of G. The 
lowest faithful representation of this algebra, which we call C (3 + N, 1) is of the dimension 
K = 21

(N +5)12]. ThisK-dimensional vector space is called the space ofspinors over P(M4,G). We 
study the decomposition of these spinors into multiplets of Lorentz spinors. We also define the 
generalized Dirac equation for such a spinor, construct an explicit representation in the case of 
G = SU(2), and give the formulae for the mass splitting. Finally, the invariant interaction with 
vector fields over P(M4 ,G) and scalar multiplets is discussed, together with the physical 
implications of the coupled equations. 

1. INTRODUCTION AND NOTATIONS 

Since the appearance of the first papers 1-3 introducing 
fiber bundles as the most appropriate framework for describ­
ing the Yang-Mills field theory, this mathematical language 
has been adopted by most physicists. The Yang-Mills field is 
interpreted as the curvature form on the principal fiber bun­
dle over the space-time, the structural group being identified 
with the gauge group. The gauge potential is the connection 
form on this fiber bundle. Still, when it comes to define an 
interaction between the gauge field and a spin-! field, or a 
scalar multiplet, the fiber bundle structure somehow gets out 
of view and the interaction is defined ad hoc, by analogy with 
electrodynamics, the Klein-Gordon equation, minimal cou­
pling, and so on. In this paper we want to show that however 
these analogies could be justified, it seems to be more logical 
to push such an analogy to the end and work all the time 
through with covariant objects over the fiber bundle, and the 
equations invariant under the isomorphisms of the fiber bun­
dle manifold itself. 

Let the Greek indices a,/3,.·· run from 1 to N +4; symboli­
cally we can write (a J = (i or a J. Remembering that 
P(M4 ,G) is locally trivial, which means that sufficiently 
small open sets of P (M 4' G ) are isomorphic to the Cartesian 
products of open sets of M4 and G, by choosing local maps in 
P (M4,G), in M4 and in G we can describe any point in 
P(M4,G) as follows: Let pEP (M4,G); then 

Let us first recall the usual notation. Let P (M4,G) be a 
principal fiber bundle over the basis manifold M4 (the Min­
kowskian space-time) and with the structural group G 
which we suppose to be a compact, semisimple Lie group. 
We design the structure constants of the group G by 

C~c = - C~b' with a,b, .. · = I,2,···,N = dimG. 

Let us also define the invariant Cartan-Killing metric form 
onG, 

gab = C~dC~b . 

In the basis M4 the metric is diagonal, 

gij = diag( + + + -). 

(1) 

(2) 

isomorphism or 

o local maps 

(3) 

where (xiJ are the local coordinates of the point in M4 onto 
which p projects; this point fixes a whole fiber 1T-1(X) in 
P (M4 ,G). This fiber is isomorphic to G; ( Sa J gives a point in 
G in some local map. The projection 1T acts on p in an obvious 
way: 

1T(p) = x if p = (x, S) 
or in local coordinates 

1T(! paj) = (xiJ if (paJ = (Xi, saJ. 
A tangent vector on P (M4 ,G) can be written as 

x=xaaa =Xiai +xaaa 

(4) 

(5) 

with X a being smooth functions of p, i.e., of both Xi and S a. 

Similarly, any I-form on P(M4 ,G) can be written as 

(6) 

with (JJa being smooth functions ofp. The differential of the 
projection operator, d1T, acts locally as follows: 

Tp3X, X a-dffaX a =(d1T(XYJ, d1T(X)ETM., (7) 

where T p means the tangent space to P (M4,G), and T M. is 

2553 J. Math. Phys. 21(10). October 1980 0022-2488/80/102553-07$1.00 ® 1980 American Institute of Physics 2553 



                                                                                                                                    

the tangent space to M4 • The tangent space to G is the Lie 
algebra of group G and will be denoted by .If G' 

A homomorphism of .If G into Tp can also be defined. It 
acts as follows: If B is a vector in .If G' then 

(8) 

is a vertical vector in Tp. The vertical vector fields on 
P (M4,G) are defined by the action ofG onP (M4,G), they are 
just tangent to the orbits of G. The connection A on P (M4,G) 
is a left-invariant Lie-algebra-valued I-form on the fiber 
bundle. In local coordinates it defines a mapping from Tp 
into.If G' 

Tp 3X, X a_A ~xa = [A (X)]Q, A (X)E.If G' (9) 

Any vector X for which A (X) = ° will be called a horizontal 
vector. At any point of P (M4,G) the I-formA defines a hori­
zontal supspace T~or C Tp. Therefore we can define a unique 
lift from T M. into Tp , 

TM • 3 V, Vi_rfVi = [T(V)]a, T(V)E Tp . (10) 

The obvious relations and definitions are satisfied then: 

XE Tp : (1"Od17-)(X) = hor X, the horizontal part of X, 

VE T M. : (dtT01")(V) = V, i.e., d1T'01" = IdTM• ' 

XE Tp : (qoA )(X) = ver X, the vertical part of X, 

BE.IfG : (Aoq)(B)=B, i.e., Aoq=Id4 <;. 

Moreover, 

'Tod1T' + qoA = Id T p 

because obviously 

X = hor X + ver X. 

(II) 

(12) 

(13) 

Because P (M4,G) is locally trivial, we can always choose the 
local coordinates in which, with no loss in generality, we 
shall have 

d;, = fJ~, db = 0, 

A 'f, = fJ~, A ~ = A ~(x), 

d~ = 0, dt0 = fJj , 

(14) 

and, because of hor X = X - ver X, 

~ = - A~, 1j = c55 . (15) 

We can finally introduce a unique metric on P(M4,G) in­
duced by the metrics on M4 and G: Namely, we define for 
any X, YE Tp a scalar product 

g(X,Y) = gG(A (X),A (Y» + gM. (dTr(X),d1T'(Y». (16) 

In other words, the scalar product of any two vectors tangent 
to Tp is the sum of the Lie algebra scalar product of their 
vertical parts and of the Minkowskian scalar product of their 
horizontal parts. By definition 

g(hor X,ver Y) = g(ver X,hor Y) = ° (17) 

so that 

g(X, Y) = g(ver X, ver Y) + g(hor X,hor Y). (18) 

The horizontal and vertical subspaces of Tp are orthogonal 
to each other. Keeping in mind (14) and (15) we see that in 
local coordinates the unique form of our metric is 
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(19) 

(20) 

Now we have at our disposal the basic notions which will 
serve to develop the geometry of our manifold. 

2. GEOMETRICAL OBJECTS ON A FIBER BUNDLE 

The fiber bundleP (M4,G) endowed with the connection 
form A ~ and the metric tensor (19)-(20) is now a Rieman­
nian manifold. We define the Christoffel symbols as usual, 

{;r} = !~O(J(3gl'O + Jl'g(30 - Jog(3Y)' (21) 

In order to compute them explicitly we have to define JaA J. 
We recall that A J is the I-form of type ad, i.e., the group 
elements act on A by left translation by means of the adjoint 
representation. This means in turn that 

JaA J + C~cA j = 0, (22) 

which can be also interpreted as the vanishing of the covar­
iant derivative of A in the group space-here C ~c plays the 
role of the affine connection coefficients. Being antisymme­
tric, this connection is just pure torsion tensor on the group. 

Having (22) in mind, we easily compute the Christoffel 
symbols 

{:J = 0, {~} = 0, {~} = G~} = gklgbcFjl' 

{~} = G~} = gklgbcA 'kFlj + C~bA j, 

Here 

Fij = 1(JiA; - JjA~) + C~cA rA j 
and 

(23) 

(24) 

fij = ~(JiA; - JjA ~). (25) 

Fij is the curvature 2-form of the connection formA, identi­
fied with the Yang-Mills field tensor. Still, the connection 
coefficients (23) are not fully gauge invariant. The reason is 
that in the fibers-and therefore in the vertical subspaces­
we had the non vanishing torsion tensor 

(26) 

This tensor should be also imbedded into Tp to give 

Spy = S~cA ~A ~o"; . (27) 

If the torsion tensor in the basis space were non null, we 
should also add the term 

S}k d1T' ~ d1T'; r'! . (28) 

From now on we put S 5k = O. The non vanishing coefficients 
of (27) are therefore 
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(29) 

Sij= -Sij=C:cA~Aj. 
The fully covariant connection coefficients are therefore 

Fpy = {;r} + Spy. (30) 

The curvature can now be computed, as well as the Ricci 
tensor and the scalar curvature. The scalar curvature of the 
connection (30) is equal (up to a constant) to 

R - l~k"';lo FaF b 
- - 4<5 6 gab ij kl (31) 

which is exactly the gauge-invariant Lagrangian of the 
Yang-Mills field. The invariant principle analogous to Ein­
stein's one can be generalized onto the P(M4 ,G), 

81 V _gRd N +4p=0 (32) 

and it will reduce itself to the usual variational principle on 
M4 becauseg = det(gaP) = (detgij)(detgab ) so that (32) is 
equivalent to 

(33) 

Vbeing the volume of G. 
Now we want to widen the theory in order to include 

spinors. We propose to construct the spinors right on the 
fiber bundle P(M4,G) and then try to reduce them into the 
Lorentz spinors (see, e.g., Refs. 4 and 5). 

First let us construct the Clifford algebra correspond­
ing to the metric (19). It is enough to define the generators 
corresponding to the locally diagonalized metric, 

tt I 0 j g
o _ __ ll_!.. ___ _ 
u/3 - • 0 • o : gab 

(34) 

These generators have to satisfy the following autocommu­
tation relations: 

YaYP + YPYa = 2gab , 
or, more explicitly 

YaYb + YbYa = 2gab , 
YiYj + YjYi = 2gij , 
YaYj + YjYa = o. 

Defining 

0= ypgaP 
we immediately get 

0iP + iP0 = 2gaP. 

(3S) 

(36) 

(37) 

(38) 

In order to now construct the Clifford algebra correspond­
ing to the metric (21) it is enough to define 

{ 
ri = Yi + Ya A r , 

ra = 0 

ra = ra , 
(39) 

{ 
rj = yj, 

yP = ~ = ya - A jY j • 
(40) 

Then obviously 

ra rp + rpra = 2gap , yayP + yPya = 2~p. (41) 
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The lowest-dimensional faithful representation of this Clif­
ford algebra is given by the 

2[(n +1)/2 1 X 2[(n +1)/21 matrices. (42) 

Here n = N +4, and [m] means the integer part of m. The 
representation space of this algebra, which is a complex 
2[(n +1)/2 I-dimensional space, is the space ofspinors on 
P(M4,G). 

3. INVARIANT EQUATIONS FOR SPINORS ON THE 
BUNDLE 

The fully invariant equation for the thus defined spinor 
defined on our fiber bundle with connection is of course the 
generalized Dirac equation 

(yava + m)t/J = o. (43) 

(Note that if ya are real, in order to make this operator self­
adjoint we have to take iyaVa.) The generalized Klein-Gor­
don equation is then obtained by 

(yava - m)(yPV P + m)t/J = 0 

giving 

(yaytIV a V P - m2)t/J = o. 

(44) 

(4S) 

Va means the covariant derivative with respect to the Chris­
toffel connection (23) or the full connection (30), if specified. 
The equations (43)-( 4S) are not well defined unless we define 
the action of Va on a spinor. We propose the following 
choice, 

Vat/J=aat/J+r~pyPr6t/J. (46) 

The Eq. (4S) can be written as 

[~OV a V P + icT'PRaP Y6y6ry - m2 ]t/J = 0, (47) 

where 

cT'P = ;i (yayP - yPya) , (48) 

and Rapy6 is the Riemann tensor. An analogous generaliza­
tion of Dirac's equation has been proposed by Drechsler (see 
Refs. 6 and 7). However in Drechsler's papers the fiber is 
isomorphic to a homogeneous space with constant curva­
ture, with the de Sitter symmetry group operating on it. The 
noncompactness ofthe group is a cause of negative energy, 
which must be ruled out somehow. In our approach we dis­
cuss only the fibers which are isomorphic to some compact 
groups; moreover, we think that the generalized spinors 
have to be defined on aprincipaljiber bundle, and not on an 
associatejiber bundle, which would be equivalent to the 
choice of some special representation. In other words, we 
think that the gauge group is more fundamental than the 
representations we choose afterwards. 

For a scalar field on P (M4,G) the Klein-Gordon equa­
tion (47) reduces to 

[~PVa V P - m 2 ](j1 = 0 (49) 

which, when calculated, gives just 

<,gijaA - m 2)(j1 = (0 - m2)(j1 = 0 (SO) 

if we assume aa(j1 = 0, which seems to be natural. 
The analog of the Dirac equation (43), when made ex-
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plicit, gives different results depending on whether we take 
the covariant derivative with respect to the Christoffel con­
nection (23) or the full connection rpy including the torsion 
tensor (30). 

In the first case (Christoffel connection) we get 

[ria; +raaa -r~~aa +r;A~gcdC~acTdb -m]tP 
=0. (51) 

Here 

cTdh = (1I2l)(YdYh - YbYd)' (52) 

The second case (Christoffel symbols + torsion tensor) gives 

[fd; + yaau - fA faa 

+ fA fgCdC~acTdb + yaCacbUCb - m]tP = 0 (53) 

(weputCabc =gadC%c)' 
The final result depends on how we define the deriva­

tive of our spin or tP along the fiber direction, aa tP. We face 
two more or less natural choices: Either 

(54) 

or 

(55) 

(the last choice being equivalent to Va tP = 0). Combining 
(54)-(55) with (51) and (53) gives four different equations if 
autP = 0, then (51) reduces to 

[rI(a; - A fgcdC~cUdb) - m]tP = ° (56) 

and (53) gives 

[rI(a; - A fgcdC:ccTdb) + yaCabcffhc - m]tP = 0, (57) 

whereas if aa tP + CabcffhctP = 0, we get 

[ria; - yaCabcffhc - m]tP = ° 
instead of (51), and 

[;>a; - m]tP = 0 

instead of (53). 

(58) 

(59) 

Thus the different choices of the geometric behavior of 
tP acquire a clear physical meaning. For example, (59) is just 
a free equation: All the interaction has been factorized out by 
covariance. (58) gives the mass splitting (breaking of the 
group symmetry), but no interaction with the gauge field. 
Equation (56) gives the invariant interaction with the gauge 
field without any mass-splitting term. In order to make Eqs. 
(56)-(59) "operative" we have to find out the eigenvalues of 
Uab , which will depend on the choice of representation. 

4. THE CHOICE OF REPRESENTATION OF THE 
CLIFFORD ALGEBRA 

Let us remember that the spinors on the fiber bundle 
defined above cannot have any direct physical meaning, be­
cause it is not an irreducible representation of the Lorentz 
group. We can hope, however, that in some cases our Clif­
ford algebra can be decomposed into a product (or even a 
direct sum) of some lower-dimensional Clifford algebras, 
and the spinor can be decomposed into several Lorentz spin­
ors. Let us first give a particular example of such a situation. 
Take the case when G = SU(2). The dimension ofSU(2) is 
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equal to 3; the Clifford algebra of the SU(2) group space 
endowed with the Cartan-Killing metric is given by three 
Pauli matrices Ua (a = 1,2,3), 

UaUb + ubua = 2gab Id(2x2) . (60) 

Id(nxn) means the unit (n Xn) matrix, gab = (jab' The Clif­
ford algebra of M4 with Minkowskian metric is given by the 
usual Dirac matrices 

Y;Yj + YjY; = 2gij Id(4x4) . (61) 

So, from now on 

Ya = 1 Yo Ya J = 1 Yo Ua J . (62) 

We want our representation to have the dimension 
2[(n +1)/2 [ = 2[(N +4 +1)/2 1 = 2[(3 +4 +1)/2 1 = 24 = 16 

in which 

Y;Yj + YjY; = 2gij Id(l6x16) , 

Ya Yb + Yb Ya = 2gab Id(l6X 16) , 

YaYj + Yjra = o. 

(63) 

(64) 

Such a representation is easy to obtain in terms of (4 X 4) 
blocks. Our building blocks will be either (4 X 4) Dirac ma­
trices or (4 X 4) identity matrices. 

The 16X 16 representation satisfying (64) is then given 
by the following matrices: 

° 
(65) Yt16X 16) = 

0 

}! 0 

0 

0 }! 
and 

(66) 

Here ua mean the 2 X 2 Pauli matrices in which the element­
numbers are replaced by the 4 X 4 identity matrices. We then 
easily get 

(67) 

and 

o 0 0 (iJ2 
y"Cabc Y'r" = 0 (68) 

where 

iJ2=af+~+~· (69) 

We see, therefore, that our 16-dimensional column (spin or) 
if; can be regarded upon as two couples of Dirac spinors: 

(70) 

on which the Lorentz transformation acts in a reducible 
way, i.e., the same Lorentz transformation applies to all the 
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four Dirac spinorsPI' n l ,P2. and n2 • That is so because the 
generators of the Lorentz transformations. 

D-ij = (l/2i)(Y;Yj - YjYJ. (71) 

are block-diagonal. as it is easy to see. The group action is 
contragradient onpl' nl' andp2' n2-but the couples never 
mix up under the group action. 

Due to the term ?'ir: there is a mass-shifting, because 
the Dirac equation takes on the following form: 

[ t(J; - A ~CabctY'C) + m + ( ~ _0 iJ2 ) ],p. (72) 

Even in the absence of the Yang-Mills potential the masses 
will be shifted: If we act on (71) from the left with the same 
operator in which m is replaced by - m, we get 

[0 + m2 + (iJ2)2],p = O. (73) 

In this formula the operator (iJ2)2 is diagonal, and its eigen­
values depend on the representation. In our case it is the 
lowest-dimensional one. and we can put iP,p = s(s +I),p, 
with s = ~. In general, when the structural group is other 
than SU(2), the eigenvalues of the operator Cabc r"Y'r" can be 
quite difficult to compute. Anyway, we cannot compare this 
contribution to the mass term with any masses of known 
physical objects, because the fiber-bundle spinor ,p is not an 
irreducible representation of the Lorentz group. The mass­
term correction can be rather thought of as a mean value 
term for all the irreducible Lorentz components contained in 
the fiber-bundle spinor ,p. In order to obtain some meaning­
ful mass terms in the generalized Dirac equation (57) we 
have to perform the following program: (a) to factorize out 
the group dependence, (b) to decompose the fiber-bundle 
spinor into a superposition of the Lorentz spinors, (c) to 
integrate the Lagrangian if(yxva + m),p over the group 
space. 

By (a) we mean the following. Locally, any point in the 
fiber bundle P (M4,G) can be represented by the coordinates 
(x,g), where x belongs to M4 and g symbolizes the coordi­
nates of the group element g, so that we can explicitly write ,p 
as ,pA (x,g), with A = 1,2, ... ,2' (N + 5)/21. Having chosen the ac­

tion of the Lie algebra generators on ,p we can in principle 
perform a finite left translation by g-I and write I/J(x,g) in 
terms of the components of,p at the point (x,e): ,pA (x,g) 
= D A B(g),pB (x), where we write for simplicity 
rf;(x,e) = ,p(x). DA B(g) is a reducible representation of G in 
the Spin (N + 3,1), and as such can be decomposed into the 
sum of irreducible representations of G. 

By (b) we mean the decomposition of,pA (x) into the 
ordinary Lorentz spinors. This can be done, because we 
know how the group SO(3, I) acts on ,pA (x) explicitly. This 
will give us some decomposition in terms of the 6-j symbols. 

Finally, by (c) we mean integrating with the invariant 
Haar measure over the group space, the Lagrangian density 
corresponding to the generalized Dirac equation (43), i.e., 
if(y'Va + m ),p. 

Such a program has been performed by Domokos and 
Kovesi-Domokos for the SU(2) group, in their paper. 5 In the 
case of the SU(3) group or some higher-dimensional Lie 
group, this program becomes a formidable task. It seems to 
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be worth trying, because it could provide us with a rich mass 
spectrum of the fermions. At this stage it is too early to for­
mulate any guesses as to its fitting with the experiment. All 
we can say is that in our theory there are no massless fer­
mions in the absence of an Abelian subgroup, as it clearly 
follows from the term, yacabcUOC. 

The last remark concerning the masses is that in order 
to compare them with the physical data our structure con­
stants have to be rescaled, i.e., they have to contain the cou­
pling parameter ,1,: C~b~,1,C~b' The nature of this coupling 
parameter depends on the kind of interactions we want to 
describe by the gauge field; e.g., for the Abelian (electromag­
netic) case A. is the electric charge e. 

Now, the general situation can be described as follows. 
Let C (p,q) be the Clifford algebra corresponding to the 

metric diag(p+,q-). We have the following reduction 
formulae8

: 

C(p +I,q +1) = C(p,q) ® C(I,I), 

C(q +2,p) = C(p,q) ® C(2,0). (74) 

C(q,p +2) = C(p,q) ® C(0,2). 

Let us also remember that 

C(2,0) = C(I,I) = MatiR) = 2X2 real matrices, 

C (2,0) = 1HI = quaternions, 

C(O,I) = C = complex numbers, 

C(l,O) = R + R = sum of two real lines. 

The splitting of the representation into a sum oflower repre­
sentations can occur if the C (1,0) appears in the decomposi­
tion of C (p,q). For example, in the case when G = SU(2), 
dim SU(2) = 3, the metric ga{3 becomes diag(6 + ,1 - ) and 
we get 

C (6, 1) = C (1, 1) ® C (5,0) = C (1, 1) ® C (2,0) ® C (0,3) 

= C(3,I) ® C(0,3) = C(3,1) ® C(0,2) ® C(l,O) 

= C(3,I)®1HI® [RalR] 

= [C(3,I)®1HI]al[C(3,I)®1HI]. (75) 

The decomposition 

C(6,I) = [C(3,I) ® 0] al[C(3,I) ® 1HI] (76) 

describes exactly the representation of Ya 's we have chosen 
in (65) and (66)-C (3, 1) is the space-time Clifford algebra, 
and the quaternions are represented by the U a matrices 
( + the unit matrix). 

The important observation here is that such a decompo­
sition works for C (2k, 1) ana does not work for 
C (2k + 1,1 )-unless we take an unfaithful representation of 
C (2k + 1,1) embedded into C (2k, 1). For example, for the 
SU(3) group the same kind of calculus yields dim SU(3) = 8, 
therefore 

C(8 +3,1) = C(1I,I) = C(I,I)®C(lO,O) 

= C (1, 1) ® C (2,0) ® C (0,8) = C (3, 1) ® C (0,8) 

= C(3,I) ® C(0,2) ® C(6,0) = C(3,1) 

® 1HI ® C (2,0) ® C (0,4), 

but C(2,0) = C(I,I), so 

C (3,1) ® 1HI ® C (2,0) ® C (0,4) 
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= C(3,1)®1HI®C(I,I)®C(0,4) 

= C(3,1)®H®C(I,I)®C(0,2)®C(2,0) 

= [C(3,1) ® Ill] ® [C(3, 1) ® H]. (77) 

The quaternions being represented by 2 X 2 matrices, the re­
presentation of C (11, 1) acts in a 64-dimensional space. In­
stead ofthe direct sum of two C(3,1) ® D, as in (75), we get 
the tensor product. This, in tum, can be decomposed into a 
sum of irreducible representations with the use of Clebsch­
Gordan coefficients. 

5. VECTORS AND SCALAR MUL TIPLETS 

In order to complete the theory, we have to include in it 
not only scalar and spinor fields on the bundle, but also vector 
fields and scalar multiplets. We don't mention the gauge 
field, because it is now part of kinetics, being included in the 
metric geometry of the fiber bundle space. It is easy to see 
that both the vector field and the scalar multiplet are includ­
ed in a single vector field over the bundle: 

(78) 

The problem now is to find a fully invariant equation for 
X" respecting the geometrical structure of the bundle. Con­
tinuing the analogy, we would like to obtain a generalization 
of the Klein-Gordon equation for a massive vector field. The 
simplest Lagrangian of such a field, leading to the general­
ized Klein-Gordon equation, is the following: 

2'(X) = !K"pgP6Vp X"V6XP + (p?/2)gapX"XP. (79) 

There is also another invariant quantity we can add to this 
Lagrangian, namely 

RapX"XP. (80) 

The full Lagrangian is then 

2'(X) = !K"pgP6Vp X"V6XP + (p,2/2)g"pxaxP 

+ bRapX"XP, (81) 

b being some arbitrary constant. One can also introduce the 
Higgs-Kibble mechanism by modifying the "potential ener­
gy" part, i.e., by adding 

V(X) = (A /4)[g"pX"XP - C]2. (82) 

The invariant equation derived from the Lagrangian (81) by 
the variational principle is formally very simple, 

VpgP6V6X" = 2bR "pXP +p?X". (83) 

The direct calculus of (83) is extremely boring and apparent­
ly does not lead to any meaningful result, because the field 
X" has no direct physical meaning. Just as in the case with 
spinors we have to split XU into parts having well-defined 
properties with respect to the Lorentz transformations. The 
splitting is very simple and amounts to defining ver X and 
hor X; in local coordinates we write 

xa=rpa_A~rp\ Xk=rpk. (84) 

Here rp a is a scalar multi;let (i.e., a scalar with respect to the 
Lorentz group, and an N-tuplet in the space of the adjoint 
representation of the gauge group), and rpi is a Lorentz vec­
tor. It is much more convenient to write (81 )-(83) in terms of 
rpa and rp k. It is easy to see that now 
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gapXaXP = gabrp arp b + gijrp irp j 

and 

gupgP6V pX "V 6X P 

_ ° ,1jjD aD b ° ~/{i}{j} cd - gablS irp jrp + gijl> kc ld rp rp 

(85) 

+ terms quadratic in (rp a,rp k) and (rp \rp I), 
(86) 

where 

Dirp a = airp a + C:"A frp c. (87) 

We choose the simplest case in which rp k = 0, i.e., when 
the field Xu is a left-invariant vertical vector field on the 
bundle. We don't really loose any generality, because it can 
be shown that rp k does not interact with the gauge field A ~, 
its contribution to the Lagrangian being of the form of free 
field energy. Therefore, we identify 

gapgP'VpX"V/jXP 

= gabfjDirp aDjrp b + Rabrp arp b, 

(R"p is the Ricci tensor of the metric g"p). (88) 

Now we see that in order to get a renormalizable theory we 
ought to get rid of the last term in (88). This is possible if the 
constant b in the full Lagrangian (81) is equal to -!; so that 

2'(X) = !KupgP6VpxaV6XP - !Rapxaxp 

+ (p,2/2)gapxaxP + V(X). (89) 

The full Lagrangian, containing both the scalar mUltiplet rp a 

and the spinor field t/J, as well as the gauge field, is then equal 
to 

U' = ° ,1jk O jlF aF b 1& ,1jjD aD b + V( ) 
oZ - -! gabo g ij kl + 215abO irp jrp rp 

+ ¢[t(ai - A ~CabcQ-h") + i"cabcQ-hc - m It/J. 

Here ¢ means t/Jtr' +5, where 

r' +5 = iPYly ... J?r -I J?r. 
The full set of resulting field equations is the following: 

aiFij + C~cA biFij = C~cDjrp brp c - ¢[r:'jC~cQ-hC]t/J, 

(90) 

(91) 

D iDjrp a _ (6 V /6rp b )gab = 0, (92) 

[t(ai - A ~CabcQ-hC) + i"cabcQ-hc - m It/J = O. 

6. CONCLUDING REMARKS 

Our main goal here is including the spinors into a geo­
metrical unification scheme. That is why we start with a 
principal fiber bundle. and all our geometrical objects can a 

Z2 ---+ Z2 XZ2 Z2 
! ! ~ 

Spin (3 + N, I) Spin (3,1) X Spin (N) Spin (3,1) 

! ! ~ 
SO(3 + N,1) SO(3, I) X SO(N) SO(3,1) 

acts on acts on acts on 

P (M.,SU(n» M.XSU(n) M. 
(N = n2 -1) 

FIG. 1. 
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priori depend on the space-time point and the point on the 
fiber as well. Only afterwards the covariance or in variance 
with respect to the group action on the fiber bundle (there­
fore, on all the geometrical objects defined on it) restrict the 
way in which these objects may depend on the group param­
eters. We did not make any topological assumptions on the 
bundleP (M4,G). This may be important for the realization of 
global spinor structures. As a matter of fact, our problem 
may be illustrated by Fig. 1. 

Although it is always possible to make such a diagram exact, 
the question remains open if the same will be true for the 
corresponding spinor structures over M 4 , over M4 X G and 
over P (M4 ,G) which may be globally nontrivial. These prob­
lems have been studied deeply by Kosmann9 and we refer to 
her papers for more information. For the infinitesimal study 
we are performing here, the local triviality of the bundle is 
sufficient. 

The renormaIizabiIity of the set ofEq. (92) is due to the 
absence of terms of Pauli type, i.e., YaFijQii. This, in turn, 
comes from the particular choice of the covariant derivative 
of a spinor (46) as well as from the choice of the connection 
itself. As a matter of fact, the connection (30) is not unique. 
One may argue that it is not metric, i.e., that for 

r~y = {;y} + Spy (30) 

the covariant derivative of the metric tensor does not vanish 

Jag{3y - r~{3g{jy - r~yg{38 

= Qa{3y = - (S~{3g8y + S~yg(38)#0. (93) 

There exists a unique affine connection with torsion S which 
is metric, i.e., giving the vanishing covariant derivative of the 
metric tensor, 

r~y = {;y} + Spy + Q~y, (94) 

where 

Q a _ I d-'8Q {3y - 2 <5 (38y (95) 

and is called the nonmetric object. 
Using the covariant derivative Va with respect to the 

connection r py instead of the Christoffel connection or 
Christoffel + torsion would, of course, modify the result. 

The action of the covariant derivative on spinors is by 
no means unique; one can argue that the proper definition 
should be, as proposed by Domokos and K6vesi-Domokos5 

(96) 
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where 

(97) 

This choice gives rise to the Pauli term in Eq. (92), while 
including the nonmetricity into the connection changes just 
the ordering in the possibilities (51), (53), (56), and (57). 

The reduction of the spinors over P (M4,G) into the Lo­
rentz spinors can already be carried out in the Lagrangian 
(90). Remember that the variational principle is defined over 
the fiber bundle; therefore we have to perform the integra­
tion in the group space (along the fiber) too. In the 
expression 

L ~b[t(ai - A ~CabccYJC) + yacabcrT'c - m]tP dV, (98) 

where d Vis the volume element of the group, we shall get the 
decomposition (see Ref. 5) into the Lorentz spinors 

r ~tP dV = 2: (j + ! - iu)uill uill . (99) 
JG i.1l 

The decomposition (99) is derived in Ref. 5 for the SU(2) 
gauge group. The spinor ujll ,P = 1,2,3,4, belong to the irre­
ducible space (j) of the gauge group and can be thought of as 
4(2j + I)-column matrices. 

To close these remarks, we should point out that the 
most useful application of the formalism exposed above 
would be to find some nontrivial solutions of the system (92). 

We don't know if any exact sol utions can be found easi­
ly, nevertheless we can expect some general features by in­
vestigating the approximate solutions with a given gauge po­
tential A ~ (the exterior field approximation). The 
approximate solutions in this case can be found by means of a 
generalized Foldy-Wuthoysen transformation (see Ref. 10). 
The essential result in this case, if we take the SU(3) gauge 
group, is the Gell-Mann-Okubo mass formula, in which the 
coefficients depend on the spin configurations of the consti­
tuting quarks. 
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In the framework of the Lagrangian field theory a new statistics for charged tensor fields is 
considered. An interaction Lagrangian is constructed such that the S-matrix is unitary, covariant 
and causal. 

Creation and annihilation operators (CAO's) of Bose 
type appear simultaneously as representatives of two differ­
ent algebraical structures. Under commutation they yield 
the nilpotent Heisenberg or Bose Lie algebra (LA) and, on 
the other hand, they span a basis in the odd part of the simple 
orthosymplectic Lie superalgebra (LS) or Bose LS, and gen­
erate it. 1 Similarly, the Fermi operators can be viewed either 
as operators generating the simple Lie algebra of the orthog­
onal group,2 the Fermi LA, or as odd generators ofa nilpo­
tent LS, the Fermi LS. In both cases the nilpotent algebras 
have a single Fock representation, whereas the Bose LS and 
the Fermi LA possess infinite sequences of such representa­
tions with CAO's satisfying the three-linear paraBose and 
paraFermi relations, respectively. 3 

Among the known simple LS's of particular interest are 
four infinite series, denoted by Kac4 asA, B, C, andD. Each 
one resolves into an infinite sequence of Lie algebras and an 
infinite sequence of Lie superalgebras, that are not LA's. 
Any n pairs of paraFermi (paraBose) CAO's generate the 
LA Bn [the LS B (O,n)] from the series Band thetefore the 
parafields (and hence Bose and Fermi fields) can be called B­
fields. 

Recently,5,6 within the framework ofthe Lagrangian 
field theory a quantization of so-called A-fields was given, 
which corresponds to the series A in the same sense as para­
fields correspond to B-superalgebras. More precisely, the 
CAO's of the tensor fields generate proper A-LS's, whereas 
the CAO's of the spinor fields close A-LA's. 

In the present letter we show how to build an interac­
tion Lagrangian from tensor fields, so that the ordinary per­
turbation approach for constructing of an S-matrix remains 
unaltered. Such A-fields have some new physical properties 
and in particular lead to additional selection rules. 

Let tPl(X,1/),.,.,tPn (x,1/) be a family of charged tensor 
fields with charge 1/ = ± and positive ( S = +) and nega­
tive ( S = -) frequency parts represented via CAO's 

af(p,1/) as 

tPf(x,1/) = (21T)-312 f dp(2pO)-1I2eiSPXai(p,1/)· (1) 

TheA-fields are defined by the three-linear relations of their 
creation ( S = +) and annihilation ( S = -) operators 

af(p, 1/) given as 

a)Present address: Institute of Nuclear Research and Nuclear Energy, Boul. 
Lenin 72, 1184 Sofia, Bulgaria. 

[{af(p, - ES),a'}(q,E1/)},a;;(k./lv)] 

= !(v -1/)8 _ €,ft8 j,k 8(q - k)af(p, - ES) 

+ !(v - S)8",A,k8(P - k)a'}(q,E1/) 

+ ~(S - 1/)ltE8(P - q)a;; (k./lv), (2) 

{af(P,ES),a'}(q,E1/)} = 0, (3) 

with S, 1/, 8, E, It, v = ± or ± 1, [x, y] = x y - yx, 
!x,y) =xy + yx. From (2) we have 

! tP (x,1/),tP (Y,1/)) = 0, (4) 

whereas for (x - y)2 < 0 

! tP (x,1/),tP (y, -1/)} #0. 

It turns out, however, that any two operators 

Aij(x) = ! tPi(X, + ),tP j(x, - )}, 

Ak,(y) = !tPk(Y' + ),tP,(y, -)} 

(5) 

(6) 

commute at space-like distances. To prove this use the repre­

sentation (1) 

[Aij(x),Ak'(Y) ] 

= L UtPf(x,S),tP'}(x,-1/)},!tP~(y,8),tPHy,-E)I] 
s,T/,O,. 

- " (21T)-6f dpdqdkdr 
- s,~,. 4(pOqOk 0,0)1/2 

X eis px + iT/qx + it;ky + iay I f.xE(p,q,k,r) (7) 

and 

I f.xE(p,q,k,r,) 

= U af(p,s ),a'}(q - 1/) I,! a~ (k,8),af(r, - E) I], (8) 

The structure relations (2) yield 

I f.x«p,q,k,r,) 

= - 1/8 _ T/,o8 j,k (q - k)! ar(P,s ),af(r, - E) 1 

+ E8!;, _ E8i,J8(p - r){ a'}(q, - 1/),a~ (k,8»). (9) 

Inserting (9) in (7) and integrating over all 3-momenta, we 
finally obtain 

UtPi(X, + ),tPj(x, - )}.!tPdy, + ),tP,(y, -)1] 

= - iDj,kD(X - y)!tPi(X, + ),tP,(y, -») 

- iDi,JD(x - y)!tP/x, - ),tPk(Y' + )1, (10) 

where D (x - y) is the Pauli-Jordan commutator function. 
Therefore the operators (6) commute for (x - y)2 < O. This 
immediately implies that any polynomials (or, more general-
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ly, analytical functions) of operators of the type (6) also com­
mute at space-like distances. 

Consider now an interaction based on a relativistic in­
variant hermitian Lagrangian density Lint' which depends 
on the A-fields only through the symmetrized combinations 
(6). Suppose moreover that the other interacting (Bose or 
Fermi) fields commute with the A-fields. Then Lint is a local 
operator, i.e., for (x - yf <0 

(11) 

Therefore one proves in the usual way for the perturbation 
approach that the S-matrix 

S= Texp[i f Lint(X)dX] (12) 

is a covariant, unitary, and causal operator. 7 

The Fock spaces Wof the A-fields are defined from the 
requirements 

a j - (p,7J)a t (q,7J)IO) = 8 jj8(p - q)z ± 10), 7J = ± 
(13) 

a j -(p,7J)IO) =0, (Ola/(p,7J)=O, 

where 10) is the no-particle state. A more detailed study6 

shows that the metric of W is positive definite if and only if 
the numbers z" are nonnegative integers. A vector 
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at (PI,7JI)···at (Pn ,7Jn)IO) (14) 

from W is different from zero only if 

- z _ <,z = 7J I + ... + 7J n <,z + . (15) 

This is an analogue of the Pauli principle for the tensor A­
fields. It shows that the charge z of an arbitrary ensemble of 
particles can not be more than z + nor less than - z _ . 
Therefore special transitions between Bose states will be for­
bidden for the A-fields. The question whether the allowed 
reactions lead to new physical predictions remains to be 
investigated. 

I would like to thank Professor H. D. Doebner for the 
valuable discussions and the several suggestions he made, 
which were taken into account. 
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U nitarity can be proven from the usual Z2 grading of gauge and ghost fields, or from a Z2 X Z2 
grading, geometrically derived by Ne'eman and Thierry-Mieg, or from a Z2 X Z2 X Z2 grading 
derived here. The claim that only the Z2 X Z2 grading leads to unitarity is incorrect. The opposite 
is shown to hold: signs due to different gradings are physically unobservable. We show how the 
Z2 X Z2 grading follows from the Z2 grading by taking a product space. 

I. INTRODUCTION 

In a series of recent papers, Ne'eman and Thierry-Mieg 
(NT) have proposed a geometrical derivation ofBRST (Bec­
chi-Rouet-Stora-Tyutin) transformations.' They arrive at 
an unusual Z2XZ2 statistics for ghost and gauge fields. For 
example, a commuting ghost field C a and an anticommuting 
ghost field C v anticommute rather than commute with each 
other. They also claim to have completed the proof ofunitar­
ity of super gravity of Sterman, Townsend, and van 
Nieuwenhuizen. 2 In this proof, no signs due to the commuta­
tor of C v and C a were mentioned. 

We show below that the Z2XZ2 grading of NT, which 
divides fields into (integer spins/half-integer spins) and 
(physical/ghost) needs an anticommuting parameter which 
commutes with gauge fields but which uniformly commutes 
or anticommutes with ghost fields. Then we show that the 
Z2 X Z2 grading is simply obtained from the usual Z2 grading 
by considering a product space. We are indebted to B. Zu­
mino for showing this relation to us. 

Finally, we explain why the signs due to ordering cv 
and ca cancel in the unitarity proof. The reason is, briefly, 
that in a cut graph one needs a Ward identity once on the 
left-hand side and once on the right-hand side, and any un­
usual sign on the left is cancelled by a similar sign on the 
right. 

The claim of NT that the proof of unitarity is complete 
only with their Z2 X Z2 grading, and that this gives support 
for their theory, is not substantiated. Also the standard 
BRST formalism can be used to prove unitarity. The unob­
servability of the unusual NT signs is of the same kind as the 
unobservability of defining two different spinors to commute 
rather than to anticommute. 

In Sec. 2 we complete the rules of the Z2 X Z2 grading 
and show that the usual quantum action is again BRST in­
variant, provided o</J i and IC a have the same commutation 
properties as </J i and 5 a and (5 a are the gauge parameters). 
In Sec. 3 we relate the Z2 to the Z2 X Z2 formalism. In Sec. 4 
we carefully analyze the signs in the unitarity proof. 

II. BRST INVARIANCE OF THE ACTION 

Consider a classical action lcl depending on gauge fields 
</J i which is invariant under local gauge transformations o</J i 

= R i" 5 a with 5 a on the extreme right. 3 If extra signs ap-

pear for some a ("a-dependent signs") we eliminate them by 
redefining 5 a. Also i-dependent signs are eliminated by re­
defining R ia . 

The BRST rules in the NT scheme for </J i read 

(2.1) 

We write for later purposes I to the left of ca. Possible a­
dependent signs due to positioning I in this way are eliminat­
ed by redefining ca. No i-dependent signs are possible if the 
classical action lcl is to be invariant under (2.1). Moreover, 
</J i and o</Jj must have the same statistics as </J i and </Jj, other­
wise lcl will not be invariant in general. Let us see what 
consequences this has. 

In the NT scheme, fields have a Z2 X Z2 grading. Ac­
cording to the first Z2 grading, fields are divided into integer 
spin fields (a, = 0) and half-integer spin fields (a, = 1). The 
other Z2 grading divides fields into physical fields (a2 = 0) 
and ghost fields (a 2 = 1). Thus for two fields A and B with 
gradings (a"a 2) and (b"b2 ) one has 

A (a "a2)B (b"b2) =B(b"b2)A (a "a2)( - )u,b, +a,b,. (2.2a) 

For A = </J i and B = C a, one has a2 = 0, so thatthe commu­
tation relations between any ghost field C a and a physical 
field </J i are unusual if and only if </J i is fermionic. Thus o</J I 

commutes with </Jj in the same way as </J i with </Jj if I com­

mutes with </J i, and in this case lcl is invariant under (2.1). In 
the usual scheme,4 fields have a Z2 grading 

A (a "a
2
)B (b"b

2
) = B (b"b 2)A (a"a 2)( - ) (a, +a,)(b, + b,l. 

(2.2b) 

The most general gauge fixing term quadratic in gauge 
functions Fa is given by 

2'(fix) = ~Fa 1'(3F(3 , (2.3) 

where 1'(3 is independent of </J i.5 Its variation is simply 

o2'(fix) = Fa1'(3F(3,jR j
y ICY, (2.4) 

where,j denotes right differentiation, The ghost action and 
the BRST variation law for the antighost read 

2'(ghost) = C·(3F(3,jRjy CY, 

OC *(3 = - IFa 1'(3. 

(2.5) 

(2.6) 

Possible p-dependent signs in (2.6) are eliminated by rede­
fining C *(3, but if (2.6) inserted into (2.5) is going to cancel 
(2.4), noa-dependent signs can occur in (2.6), and nop,j, or 
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r dependent signs can occur in (2.5). Hence, the quantum 
action is the same as usual. The unusual sign in (2.6) is due to 
the fact that pulling I from right to the extreme left in (2.4) 
does not yield an overall minus sign. In the usual scheme, 
8tP i = R iacaA, and pulling A from the extreme right to the 
extreme left in 82' (fix) yields an overall minus sign since the 
variation of an action is always bosonic. 

We must now show that the variation of Fp.jR j l' C l' 
vanishes. Since one can consider Fp which are linear in tP i as 
well as Fp which are nonlinear in tP i, one has two 
requirements 

(8Fp.)Rjrcr = 0 and Fp.j8(Rjr C 1') = O. (2.7) 

Together they state that the double variation of Fp v~nishes, 
i.e., nilpotency of BRST. The first requirement reads in full 
(writing II rather than I) 

Fp.jkR kallCaRjrcr = 0, (2.8) 

and multiplying on the right with 12, one finds for a pair of 
(j,k) two terms (no sum overj, know) 

Fp.jk(R kaIICa)(RjrcrI2) + Fp.kj(Rjr/IC1')(R kaCaI2)· 
(2.9) 

This pair of terms vanishes if R k a Ilca andR j rcrl2 have the 
same commutation properties as tP k and tP j and if in addition 
II and 12 anticommute or if R kallca and Rjrcrl2 have dif­
ferent commutation properties while II and 12 commute. 
Thus, for all k andj, 8tP k and 8tP j must have the same or 
opposite commutation properties as tP k and tP j. The commu­
tation properties of 8tP k and 8tP j are 

8 1tP J8 2tP k = 82tP k8 ltP j( - t'+S2+ S
, (2.10) 

SI = al(tPf)al(tP k) (2.11) 

Sz = [a l(C1') + 1] + [al(ca) + 1] 

+ [a l(C1') + 1 ][al(Cj + 1] + 1 (2.12) 

S3 = u(/ltca) + U(/2'C1') + [al(C')aI(Cj + 1] + u(/1,/2)' 

(2.13) 

The term SI would result if 8tP i and 8tP j had the usual com­
mutation properties, the term S2 accounts for the inter­
changing of Ilcr and C al2 in the usual scheme, and thus in 
SI + S2 one has not yet specified how Ilcr and C al2 com­
mute (we have used that in the NT scheme R j l' and C al2 

commute as usual, which is equivalent to requiring that 8tP j 

and tP k have the usual commutation properties). Finally, S3 
specifies how Ilcr and calz commute in the NT scheme. 
The symbol u(/1,ca) is +1 if II and ca commute and -1 if 
they anticommute. 

Thus, S2 + S3 must be even. This is the case if u(/1,ca) 
+ u(/2,C 1') is even. Hence, either I commutes with all C a, or I 

anticommutes with all ca, while II and 12 anticommute. 
We now return to the second term in Eq. (2.7). It re­

quires that 

Rjr.k(R kalca)cr + Rjr8cr = O. (2.14) 

This relation must be proved by using closure of the gauge 
algebra 

Rjr.kR ka(TJa 51' - 5aTJ1') = RJpfPraTJa sr. (2.15) 
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Putting TJa = IC a and 5 l' = C 1'/2, one can useEq. (2.15) and 
(2.14) only if two properties hold 

(i) these special TJa and 5 l' have the same commutation 
properties as the usual parameters TJa and 5 r. In this case Eq. 
(2.15) remains an identity; 

(ii) the terms with - 5 aTJr is equal to the term with 
TJa5 r. In the usual scheme this is obvious ( - ca A 2C l' A 
= CaACrA2 no matter now a single A commutes with C1'). 

The condition (i) is equivalent to S3 = a I (C a)a I (C 1') 
and is thus always satisfied. The condition (ii) is also satis­
fied, since II and 12 anticommute. It follows that 

8cr = - UrapICPCa. (2.16) 

Thus, the usual quantum action is invariant under the modi­
fied rules [Eqs. (2.1), (2.6), and (2.16)]. The fields commute 
as in Eq. (2.2) and I anticommutes with itself while I com­
mutes with tP i. Finally, I can either commute with all C a or it 
anticommutes with all ca. 

These results strongly suggest that I is an anticommut· 
ing parameter which acts in the second Z2 grading or in a 
space outside both Z2 gradings. Thus there are three possible 
BRST formalisms in which I is always anticommuting with 
itself 

(i) I and A (a l,a2) anticommute if and only if 
a I + a2 = 1. This is the usual scheme4

; 

(ii) I and A (a I ,a2) anticommute if and only if a2 = 1. 
This is the NT schemel; 

(ii) I and A (a l,a2) always commute. This is a new 
scheme, proposed here. One may formally call this a 
Z~ X Zz X Z2 grading. The last Z2 factor is nonzero only for I 
itself. 

III. RELATION BETWEEN 4 GRADING AND 4X Z2 
GRADING 

We now show that one can derive the statistics rules in 
Eq. (2.2) from the usual statistics rules by making a direct 
product space. We are indebted to B. Zumino for showing us 
this possibility. 6 

Consider a Grassmann algebra with Z2 grading, with 
even elements Jd (the bosonic physical fields), odd elements 
o a (the fermionic physical fields) and differentials dJd (even 
elements, the integer spin ghosts) and dO a (odd elements, 
the half-integer spin ghosts). The commutation rules of the 
Z2 grading of this Grassmann algebra produce the usual 
statistics for physical fields and ghost fields. 

On the other hand, consider a Grassmann algebra with 
Z2XZ2 grading, whose elements are 

X j = xj 
® 1, TJa = 0 a ® U 3 

(3.1) 

The Z2 X Z2 commutation table reads 

Xj TJa DXj DTJa 

+ + + + 

G)~ 
G 

+ 
+ 
+ +. 
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The + signs denote that the elements defining the row and 
column commute, the - signs that they anticommute, and 
one can even express D in terms of d by D = d X (T I' The 
unusual signs are encircled, and this table corresponds ex­
actly to Eq. (2.2b) if one identifies Xj(1]a) with physical 
fields, and DX j(D1]a) with ghosts, with integer (half-integer) 
spins. 

This simple relation between the Z2 and the Z2 X Z2 
grading leads one to expect that the encircled spins in the 
table are unobservable. That this is indeed the case we will 
show next. 

IV. UNITARITY OF SUPERGRAVITY AND STATISTICS 
OF GHOST FIELDS 

In this section we will first discuss the proof of unitarity 
of supergravity using the ordinary Z2 statistics. Afterwards 
we will discuss whether there are any changes if one uses 
instead Z2 X Z2 statistics. In the diagrammatic proof of Ster­
man, Townsend, and van Nieuwenhuizen, no signs which 
distinguish between supersymmetry ghosts and coordinate 
ghosts were given. The reason is that such signs always can­
cel. To make this completely explicit, we will consider a 
graph consisting of a virtual gravitino and graviton, ex­
changed between blobs with external lines which are on-shell 
with physical polarizations. We will omit these explicit lines 
since they are the same in all cases considered. For a discus­
sion ofunitarity based on a Gupta-Bleuler type of approach, 
see Ref. 10. 

The gauge fixing term is chosen as 

X'(fix) = ~1j;'rdr'¢ - ~ [al' (\1;8'"')]2 
+ 0- (eml'8:. - m~nf. (4.1) 

In general, X'(fix) = !Fa yaf3Ff3 and 
X'(ghost) = c*aFa,jR~Cf3. Since we normalize as O¢/l 
= al'€ + more, and X'(ghost) = - CdC - C*VOCV 
+ more, we find 

Ff3 = [ - (r·¢t, a). (\I;gAl'), e;;;r - m~n] (4.2) 

Fa yaf3 = [~1j;'rd, -! a). c:VigA')avl' , 0- (em/l0l'n - m~n)]. 
(4,3) 

The two Ward identities we will need are both derived from 

o(t/J iC *(3) = 0 = «R ia CaA )C*f3) + (t/J i( - AFa ya(3». 
(4.4) 

The first Ward identity follows if one puts t/J i = esa and C *f3 
equal to the supersymmetry antighost 

_ Hes'a' os'soa'a1j;'rd ) = (aacao~Ca). (4.5) 

The second Ward identity is obtained fort/J '= ¢I"a' and C*f3 
equal to the coordinate antighost 
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! (¢I'·aa). (\I;gAQ» = «aI" ca)c*a). (4.6) 

We omitted in Eq. (4.5) a term (Csno~(1j;'rd» since the Lo­
rentz ghosts C sn do not propagate and hence do not contrib­
ute in the unitarity relations (see Ref. 7, where it is shown 
that this is true after rediagonalizing the Lorentz ghosts 
cmn). 

The propagators are normalized as usual8 

Pi%~vbb(k)=!(rJ'rl')ab' PI/2ab(k) = -Uab 

p 2.sa.rp(p) = _ !i(OsrO<7P + 8'Por<7 _ OsaOrp), P ~v = - iol'v' 
(4.7) 

We have taken only the propagator of the symmetric part of 
erp since its antisymmetric part does not propagate. 

Consider now the graph in Fig. I, in which a gravitino 
and a graviton are exchanged. Let the S-matrix be given by 

(4.8a) 

(4.8b) 

Lower indices refer to the lower lines in all graphs, upper 
indices to the upper lines, and Land R denote left and right, 
respectively. We will compare this graph to the graph in Fig. 
2, in which the gravitino and the graviton are replaced by a 
super symmetry ghost and a coordinate ghost, respectively. 
Let the S-matrix for Fig. 2 be given by 

S = N'LP !~2(k )N'f,..b P l.ap(p) 

= - «C*PN'LaCa)(CbN'f,.,bC,J), 

(4.9a) 

(4.9b) 

The minus sign is cancelled if one moves C *P from the ex­
treme left to the extreme right since the effective action 
C!' N La C a is itself always bosonic. 

If both gravitino and graviton have unitary propaga­
tors, the theory is manifestly unitary. These unitary propa­
gators are obtained from the renormalizable propagators in 
a very simple way, namely by replacing 0I'V by o;v = €/: €,,-

+ €,: € v" . We refer the reader to Ref. 2 for a detailed discus­
sion. In one of the propagators in Fig. lone may replace the 
unitary propagator by the renormalizable propagator; we 
choose for this the graviton propagator. The gravitino prop­
agator is now rewritten, using the on-shell identity9 

o;~~. = O,LY - (k"k" + kvk,J(k.k) -I, (4.10) 

where kit is the time-reserved of kll , as follows 

P 3/2(k )unit = (0 . _ kv kv' )(lr' IIr ,) 
ab W k.k 2 v I' 

X (Olll" - k,l' kll (k.k) - I). 

We will consider the term in (4.11) 

kI'GrJ1r,t.H - kl',(k.k) I] 

p.P <r,p 

@
p ---~--

L' a 
--+--

--~-@N cr 
R'b 

--+--
a.k b.k 

FIG. 2. 
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(4.11) 

(4.12) 
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FIG. 3. 

and show that if kl' hits the left vertex M L' then M L flips into 
NL which absorbs kl' and emits ap"upstairs. Thisp"travels 
to the right, hitsMR, flipsMR intoNR, which absorbsp"'and 
emits a kl" downstairs. Finally this kl" hits - kl" (k.k) ~ I 
and produces ( -1) times the ghost graph. 

We thus consider the expression (4.8a) substituting 
(4.12) 

Z = (p2,s",rp(p)M'l.l'okl')GrJlrl" )ob 

( f,}t X _ ~ s" 
k.k R,vb' (4.13) 

The first Ward identity [Eq. (4.5)] reads, in terms of the 
effective actions in Eq. (4.8b) and (4.9b), (see Fig. 3) 

- ~ (e""(erp M (Jto' tP 1'0' )[ ¢v r v ( - ill)]a ) 

= - p 2.s".rp(p)M'l.l'a,kl' ( - ill)a'a 

= (erc S( C *m N ;:',a' Ca' )Ca ) 

= ip"P l.sm(p)N ';'..A - II)a'a' (4.14) 

Hence, wemayrepiaceP 2MLk inEq. (4.13)byp"p IN L and 
find 

Z= (p"pI,Sm(p)Nta')( - :~~) 
xC!rvllrl")abM':,vb' (4.15) 

We now use the second Ward identity in Eq. (4.6) de­
picted in Fig. 4 

~ (tPl"a(¢vbM'~Vbe"'~(V';gAJ> 
= Grvllrl" )abM':,vb p" 

= (al',Ca(CbN't."bC")C*s) 

= ikl"( - II)ob N 't."b P l,cTs(p). (4.16) 

We used that (e"'''a-' (VggAJ) = pS'tP" + p"{)SS' and thatM:f' 
can be taken symmetric in So" [see below Eq. (4.7)]. Thus we 
find for Z 

z=p1,sm(p)Nm ,(_ ~)k ,PII2(k)N'" {)",S 
L,o k.k I' ab R.b 

= ( -1)times(4.9a). 

Hence, we find precisely the correct result: the term Eq. 
(4.12) leads to minus the ghost loop, the latter with a definite 
orientation. 

Thus, as shown in Ref. 2, unitarity holds for supergra­
vity if the BRST formalism, which yields the Ward identi­
ties, is based on a Z2 grading of gauge and ghost fields. 

We now discuss whether there are any modifications 
when one chooses the Z2 X Z2 grading of NT, or the 
Z2XZ2XZ2 grading we have discussed. The quantum ac­
tion being unchanged, Eqs. (4.2) and (4.3) are the same. The 
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Ward identities become (R ~ C ac *f3 + ¢ iFa ya(3) = 0 since 
I commutes with ¢ i. Also Eqs. (4.5) and (4.6) are not modi­
fied. In Eq. (4.8b) bringing e"" from the right to the left yields 
Eq. (4.8a) without extra sign, since a physical integer spin 
field commutes with all other fields. In Eq. (4.9b), bringing 
C *P to the right again yields an extra minus sign in Eq. 
(4.9a), since C *P anticommutes with Ca but commutes with 
tPl'a (in the usual Z2 grading the opposite is true: C *P com­
mutes with Co but anticommutes with tfl'a)' Thus Eqs. (4.9a) 
and (4.9b) are unmodified. The rest of the proof is numerical 
and independent of statistics. 

Hence, also in the Z2 X Z2 or the Z2 X Z2 X Z2 scheme, 
unitarity holds. We can say that the signs which are only due 
to a different grading, are not observable in the unitarity 
relation. 

V. CONCLUSIONS 

There are three BRST formalisms. All three use the 
same quantum action and an anticommuting parameter, but 
whereas in the first scheme A anticommutes with gravitino 
and coordinate ghosts, in the second scheme I commutes 
with all gauge fields and anticommutes with all ghosts, while 
in the third scheme (derived here) I commutes both with 
gauge and with ghost fields. In the second and third scheme, 
fields commute as in Eq. (2.2a). 

The relation in Eq. (2.2a) can be obtained from the usu­
al relations in Eq. (2.2b) by taking a direct product space 
(Sec. 3). This suggests that the signs which are different in 
different gradings are physically unobservable. This is in­
deed the case in the unitarity relation. A detailed analysis 
shows that in all three schemes, unitarity can be proven (Sec. 
4). 

Thus, the proof of Ref. 2 is not only complete for theZ2 

cases but applies equally well to the Z2 X Z2 cases and wheth­
er one prefers the usual Z2 grading, or any of the other grad­
ings is a matter of taste. In particular, one cannot state that 
the Z2 X Z2 scheme is the only correct scheme since only it 
leads to unitarity. 

In loop calculations, the differences in statistics cancel. 
For example, a loop obtained by contracting (cvca)(CbCI') 
always has the same sign when one brings C I' to the left of CV 
since CI' commutes twice (with c a and with Cb

). 

The position of the anticommuting parameter in the 
ghost la ws {)C a = - ~ fa f3y C y A C f3 ( usual scheme) and {)C a 
= - if a f3y IC f3c r (NT scheme) is such that the statistics of 

the ghosts is the same as that of the structure constants in 
either case. 

p<T X ( S<T'P~ \ 

l"O'k~ ) 
( S,P-+--Q) 

N S x k I 

R'b I' 

o,k .. ----

FIG. 4. 
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Just as Maxwell's electromagnetic field equations govern the evolution of electric and magnetic 
spatial vectors if some choice of time function has been made, so also the neutrino equation and 
Dirac equation may be understood as governing the evolutions of certain spatial quantities. In this 
space-plus-time view of the spinor field equations, it is accurate and natural to regard a two­
component spinor as the square root of a complex spatial null vector. The field equations are 
written in 3-plus -1 form for both the spinor fiedls and the corresponding null vector fields. A 
spatial null vector is of the form M = E + iB, with E·E - B·B = 0 = E·B, so it is also of the 
correct algebraic form for describing a null electromagnetic field. The time derivative of a squared 
neutrinofieldMa , however, is - i curlMa + (M)CDaMc' compared with simply - i curlMa for 
a source-free Maxwell field. Here (M) c is the real spatial unit vector in the neutrino propagation 
direction EXB, and Do is the spatial covariant derivative. 

1. INTRODUCTION 

The theory of electromagnetic fields was first under­
stood as fields of electric and magnetic 3 vectors whose evo­
lutions are governed by Maxwell's equations. The four di­
mensional relativistic formulation of Maxwell's equations 
does not invalidate the original understanding, but rather 
shows that the fields and their governing equations are of the 
same form no matter what choice is made for the decomposi­
tion of space-time into space and time. For other integral­
spin relativistic fields and their field equations a similar un­
derstanding is readily available: It is a straightforward mat­
ter to interpret the equations as governing the evolutions of 
certain spatial tensor fields. 

The purpose of this paper is to show that half-integral­
spin field equations, such as the neutrino equation and the 
Dirac electron equation, are also evolution equations for spa­
tial fields. In this picture a two-component spinor appears as 
a natural square root of a null complex 3 vector. Initial data 
for a neutrino field therefore consist of a complex null vector 
field tangent to the initial-data hypersurface. An additional 
bit of information must be supplied to specify the choice of 
sign in taking the square root. Alternatively, one can work 
directly with the squared spinor field, i.e., with the null vec­
tor field. This alternative is simpler in the sense that all rel­
evant quantities are common tensor fields; it is awkward, 
however, inasmuch as the field equations, which are linear 
equations governing the spinor fields, become nonlinear 
equations for the squared fields. 

The presentation in this paper is intended to be explicit 
enough that the results may be applied in numerical evolu­
tions of space-times with spino! fields. 

2. SPACE PLUS TIME 

For the discussion of space spinors it will be helpful first 
to fix some notation and conventions. 1 

A time function t on a space-time will be a smooth 
function whose hypersurfaces of constant value are space­
like. The future-pointing unit vector field normal to these 
constant-time hypersurfaces will be denoted by na' The lapse 

function a may be defined by na = aVa t. The space-time 
metric gab will have signature (+ - - -), so 
nana = + 1; and note that the vector field ana is parame­
trized by t: 

(anaVa)t = (na)aVat = nana = 1. (1) 

The torsion-free covariant derivative defined by gab will be 
denoted by Va' 

The tensor hab: = gab - na nb is the intrinsic metric ten­
sor of the constant-time hypersurfaces. The contravariant 
form of the intrinsic metric is h ab = g"b - nanb. (Here, and 
throughout, indices are raised using the space-time metric 
g"b.) A spatial tensor is a tensor which has no nonzero con­
tracted product with na or na' The tensor ha b = ga b 
- na nb serves to project vectors or differential forms to spa­

tial tensors, so arbitrary tensors can be projected to spatial 
tensors using products of this projection tensor. The spatial 
alternating tensor is given in terms of the space-time alter­
nating tensor by Ebcd = naEobcd' 

For spatial tensors, the torsion-free covariant derivative 
Da arising from the metric hab has a simple operational defi­
nition: Given a spatial tensor (for example, Sb Cd), its space­
covariant derivative (DaSb cd) is obtained by taking its 
space-time derivative (VaSb cd) and then projecting the re­
sulting tensor: 

Any tensor can be written in terms of purely spatial 
tensors together with the unit normal na (or na)' For 
example, 

V[anb j = V[a(aVb jt) = (V[aa)Vb jt 

= (V[a Ina)nb j = - n[a Vb j Ina 

= - n[a(Db j Ina + nb jnCVc Ina) 

(2) 

= - n[aDb j Ina. (3) 

(Here the square brackets mean skew symmetrization. 
Round brackets around indices will denote symmetriza­
tion.) Note also that nbVanb = 0, since nbnb = 1. Moreover, 

naVanb = nav bno + 2naV[anb j = - Db Ina; (4) 
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and from these results, it easily follows that 

Vanb = - Kab - naDb Ina, (5) 

where Kab is a symmetric spatial tensor field. This last equa­
tion frequently comes in handy. 

3. SPACE SPINOR ALGEBRA 

A space spinor will be denoted as an ordinary two-com­
ponent spinor fJ,A' In fact, it carries the same information as 
an ordinary spin or and may be identified with an ordinary 
spinor. The only difference is in the way the spinor is related 
to space-time geometry. The description of a space spinor 
utilizes some (arbitrary) time function, and thereby charac­
terizes the spinor (up to sign) by way of exclusively spatial 
tensors. The standard picture2 of (the square of) a spinor 
consists of a real null vector (flagpole) and a 2 plane (flag) 
spanned by the null vector and some orthogonal spacelike 
vector. This is equivalent to representing the square of the 
spinor fJ, A by a self-dual null bivector, and one writes Mat 
= fJ, AfJ,B€ B 'A" Any such self-dual null bivector is of the form 

M ub = M[a Ib I' where la is a future-pointing real null vector 
and Ma is a complex null vector orthogonal to la' If a time 
function has been defined, then la and Ma may be fixed 
uniquely by requiring that ha bib be a unit vector and Ma be a 
spatial vector. The complex spatial null vector Ma is in fact 
equivalent to the self-dual null bivector M a1 , as follows. 
Given M a = E a + iB a (with E a and B a real), let (M)a be 
the real unit spatial vector in the direction ofEXB (i.e., in 
the direction of €" bcE b B C). Let I a be the future-pointing real 
null vector whose spatial projection is (M )a. Then M a1 
= Mia Ib 1 is the self-dual null bivector corresponding toMa. 

By virtue of a specified time function, the standard geometri­
cal picture of a spinor therefore corresponds to a spatial null 
vector. 

A phase transformationfJ, A !---+e'8fJ,A causes the transfor­
mation Ma !---+e2i8Ma' The plane of M a (i.e, the subspace of 
the tangent space spanned by the real and imaginary parts of 
M U) is invariant under this phase rotation, and so is the orth­
ogonal null direction I a. The rotation occurs within the 
plane of M a. A rotation of 1T radians in the phase of fJ,A 
causes E a and B a to make a full rotation of 21T rad in this 
plane, so fJ, A and - fJ, A correspond to the same null vector 
Ma. 

The correspondence between null spatial vectors and 
null self-dual bivectors suggests a further correspondence. 
Since a basis for complex spatial vectors can be selected from 
the null spatial vectors and since the corresponding null self­
dual bivectors span the 3-complex-dimensional vector space 
of all self-dual bivectors, there is an identification between 
complex spatial vectors and self-dual bivectors (which is ba­
sis independent). This yields a natural isomorphism between 
the space of complex spatial vectors and the space of sym­
metric spinors e AB = e(AB)' since a self-dual bivector is of 
the form eAB€A 'B" 

There is actually a more direct route to this isomor­
phism. The direct route exploits the fact that the unit normal 
vector nAA ' defines an isomorphism from the space of conju­
gate (primed) spinors to the space of (unprimed) spinors: 
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... /- A' 
a 4 , 4V 2nB a A,. 

The inverse map is given by 

aB ~ - Y2n B
A ,aB , 

since 

- 2n B 
C' n B A ' = € C' A' = of. 

(6) 

(7) 

The complex four-dimensional tangent space consists of vec­
tors V AA' which can be mapped, via n°, to un primed valence-
2 spinors: 

V AB: = V A
A, (Y2n BA '). (8) 

The vector nAA 
' itself becomes 

(9) 

The spatial vectors are those vectors orthogonal to na, and 
hence the vectors SAB such that SAB~B = O. The spatial vec­
tors are therefore precisely the symmetric spinors. The de­
composition of a complex 4 vector into spatial and space­
orthogonal components coincides with the decomposition of 
its valence-2 spinor into a symmetric spinor together with a 
scalar multiple of €AB' 

Let IOA,L A 1 be a normalized spinor basis (0 A LA = 1) 
chosen so that nAA ' = (ll-\/!)(OAOA' + tA-[A). Then the iso­
morphism between primed spin space and unprimed spin 
space is given by the action on basis spinors: 

OA' I---+LAo t A, 1-+ - 0A' 0A 1---+ - t A" LA I---+OA,· (10) 

The spin space automorphisms (OA H A, LA I-+LA) such that 
OALA = 1 are a representation of the group SL(2,C). The sub­
group for which oAaA' + iAfA' = (l/v2)nAA' is SU(2). This 
is the subgroup of linear transformations preserving the 
form (10) of the isomorphism (6) and (7). 

By exploiting a given time function it is now possible to 
dispense with primed spinors altogether. Any primed index 
automatically converts to an unprimed spinor index via its 
contracted product with V!'nAA '. A space-time tensor in­
dex, which is normally identified with a pair of spinor indices 
of which one is primed,2 will here be identified with a pair of 
unprimed indices. The following equalitities are then 
sensible: 

Va = VAB = V(AB) + V IAB I = V(AB) + !Vcn€CD€AB 

= V(AB) + (Vcn')nAB = V(AB) + (VcnC)no 

(11) 

In order to minimize confusion, tensor indices may be cho­
sen from the odd-numbered letters of the alphabet. For ex­
ample, Ta cg = TAB CD GH' 

For vectors which are not purely spatial, attention must 
be paid to the order of the indices. A spinor V A B could define 
two different vectors, depending on which index were con­
verted to a primed index. According to the definition (8), a 
spinor V AB is identified with a vector V AA 'by converting the 
second index to a primed index. The other vector W C 

: = - v'2nAC ' VA C would be related to V C by time reflection: 
we = V C 

- 2(na va)nc. 
The index clumping rules apply also to higher valence 
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tensors. For example, the space-time metric gac is 

gABCD: = (V2n B
A') (V2n D C')gAA'CC' 

= 2nB A 'n D C'EACEA 'C' 

= EACEBD · 

The spatial metric hac is 

hABcD = gABCD - nABnCD 

= EACEBD - ¥ABECD 

= - EA(CED)B' 

4. DERIVATIVES 

(12) 

(13) 

The transcription of spinor field equations from their 
four dimensional spacetime form to a space-plus-time form 
requires the conversion of the spinor covariant derivative 
V AA' to derivatives which can be evaluated with reference 
only to intrinsic spatial geometry plus a suitable time 
derivative. 

A convenient choice for the spatial covariant derivative 
is the following: 

(14) 

Here K ABcD : = Kuc is the extrinsic curvature defined by Eq, 
(5). The derivative definition extends to spinors of arbitrary 
valence in accordance with the usual Leibnitz rule for the 
derivative of a product. The spinors ECD and ECD are DAB 
constant since they are V AA' constant and K ABcD 
= K(AB )(CD)' Acting on functions, DAB is the spatial gradi­

ent: DAB f = ha cV c! Acting on a spatial vector Sc' the de­
rivative DABSCD agrees with DaSe as defined in Sec. 2. This 
can be checked by verifying 2nBA ,nD CDABSCD = DAA ,Scc, 
using Scc = - V2nD CSCD and Eq. (5). 

Although the definition (14) makes the spatial covar­
iant derivative appear to be computationally complicated, it 
is actually simple. In specific ca1culations spinors are cus­
tomarily referred to a normalized basis. If ! ° A ,l A ) is such a 
basis (OAlA = 1), let 

ma:= -OAOB' ma:=lAlB' za:=V20(AlB)' (15) 

Note that ma and ma are the complex null vectors associated 
via Eq. (10) with OAtA" andlAoA" respectively, andzDis the 
real unit vector zD = i~ bcmbmC (v-=l times the cross prod­
uct of the two null vectors). Now let sa be any real spatial 
vector. To compute Dsoc and Dslc (i.e., SABDABOC and 
SABDABld one need only compute the tensorial "rotation 
coefficients" zDDsma and mUDsma , where 
Dsmu: = S hDb ma' The DAB derivative is then given by the 
formulas 

and 

Dsoc = - J-.(maDsmu)oc + ~(zDDsma)lc (16) 
2 V2 

~ (mUDsma)lc, 
2 

(17) 

which are easily verified by transvecting with the basis spin­
ors and using Eq. (15). 
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A convenient choice for the time derivative of a spinor 
field,uA is 

(18) 

where a is the lapse function. The action of Dn on spinors of 
higher valence is obtained by the Leibnitz rule. Note that 
DnEAB = 0, and Dn f = nOVa f for any function! Like the 
spatial covariant derivative, Dn has the property that its ac­
tion on a spatial vector Sa = SAB is simple: DnSa 
= ha bncV cSb' It is just the spatial projection of the space­

time-covariant derivative with respect to the vector n°. It is 
therefore easy to compute time derivatives by reference to a 
normalized spinor basis. The time derivatives of the basis 
spinors are given by Eqs. (16) and (17) with Ds replaced by 
Dn throughout. 

In 3-plus-l formalisms it is usually the Lie derivative 
!f an of spatial tensor fields which is most applicable as a 
"time derivative." For action on tensor fields, the derivative 
D" can easily be converted to !fan by insertion of known 
(nonderivative) terms. For example, using Eq. (5) and the 
formula for the Lie derivative of a one form, it is easy to 
check that 

(19) 

Combining D n and DAB provides the spinorial 3-plus-l 
transcription of V AA ,,uc (or V AB,uC=v'!nB A 'V AA ,,uc): 

VAB,uC = V(AB),uC + V IAB flc 

D ID 
= AB,uC + Vz KABcD,u 

+ EAB (~z Dn,uc + ~pDDcD Ina). (20) 

5. FIELD EQUATIONS IN MINKOWSKI SPACE WITH 
CARTESIAN TIME 

In Minkowski space there are available the Cartesian 
time functions for which Kab = 0 and a = 1. In that case the 
derivative formulas (14) and (I 8) simplify, and the structure 
offield equations is surveyable. As a first example, consider a 
neutrino field,u A satisfying the field equation V AA ,,uA = o. 
This is equivalent to V AB,uA = 0 or, using Eq. (20), 

Dn,uB = - V2DAB,uA. (21) 

This last equation gives the time derivative of,u B in terms of 
its spatial derivatives. 

In view of the fact that a spin or is the square root of a 
spatial null vector, it is also appropriate to examine the evo­
lution of the null vector field Ma= - ,uA,uB' Since DnMa 
= - 2,u(ADn,uOl' the field equation (21) gives 

D"Ma = 2V2,u(ADB)CPC, 

The identity 

CD - CD D C ,u AB,uC -,u C(A,uB) - ,u(A B)C,u 

allows one to see that 

2,u(A DB)C,uC = DC(A,uB),uc - ,uCDAB,uC' 

Making this substitution yields 
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DnMa = V2Dc (AflB)fl c - V2flcDABflc­

Now, it is not hard to verify that the cross produce 
- Ea 6cUb Vc of spatial one forms Ua and Va is given by 
- iv7uc (AVB) c, and so curlMa' i.e., - Ea bCDbMc' is 
- iv7DC(AM~p or + iV'IDc(AflB)flc, Therefore, 

(25) 

DnMa = - i curlMa - V2flcDABflc. (26) 

The final term on the right can be usefully re-expressed with 
the following notational convention: Any nonzero spatial 
null vector M = E + zB (with E·E = B·B and E·B = 0) de­
fines the plane ofE and B and, in particular, a unit spatial 
vector perpendicular to the plane in the direction ofEXB. 
Let (M) a denote this real unit vector, so 

(M)a: = - i[MdMd ] - l~bcMbMc. (27) 

Then the equation vTflcD ABflc = - (M )CD aMc is valid, 
as may be verified by introducing a spin or field A A satisfying 
flAA A = 1 and A AnA A 'fiA' = 0, so that (M) c = v7fl(CAD). 
The "squared neutrino equation" is therefore 

(28) 

The unit vector (M)a is in the direction of propagation of 
the neutrino field, it being aligned with the spatial projection 
of the null vectorflAfiA" 

The neutrino can thus be pictured as a complex vector 
E + zB (with E·E - B·B = 0 = E·B) propagating in the di­
rection ofE X B, in complete analogy with a null electromag­
netic field. A null source-free Maxwell field may be de­
scribed as a (divergence-free) spatial null vector Ma which 
satisfies DnMa = - i curlMa. It is the nonlinear second 
term on the right side of Eq. (28) which distinguishes the 
squared neutrino equation from Maxwell's evolution 
equation. 

The Dirac equation can be manipulated in much the 
same way. It is customary' to introduce a pair of spinor fields 
S A and 17 A ,; the Dirac equation is then the pair of equations 

A m AA ' m ~ A (29) VAA,S = ----=17A' and V 17A' = - -=!> , 

V2 V2 
where m is the electron mass. With 17B: = V'InB A '17A" these 
equations become 

VABS A= m_17BandVAB17B= - m_SA. 
V2 V2 

Using Eq. (20), these yield 

DnSB = - v'2DABS A + m17B and 

Dn17A = + V2DAB 17B - mSA· 

(30) 

(31) 

Each spinor field satisfies an evolution equation similar to 
the neutrino equation but with the other spinor field serving 
as a driving term. One can picture the two spatial null vec­
tors propagating and interacting. When the equations for the 
null vectors are written out, they are similar to the squared 
neutrino equation except that the equations for the Dirac 
fields each include an extra driving term proportional to 
S(A 17B)' Explicitly, if X AB = - SASB is the one null vector 
and YAB = 17A 17B the other, then the coupling terms are pro­
portional to XXV: 
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DnXa = - i curlXa + (X)CDaXc 

- iV2m ( - Xd y d ) - 1I2Ea bCXb Yc' (32) 

D n Ya = i curl Ya - (Y ) cD a Yc 

- iV2m ( - Xd yd ) - 112Ea bCXb yc' (33) 

By writing the Dirac equation tensorially in this way, 
there are several apparent sign ambiguities. If null vector 
fields Xa and Ya are specified on an initial hypersurface, 
there are four corresponding pairs of spinor fields on the 
hypersurface since there are two possibilities for SA and two 
for 17A' After evolving the null vectors, however, there is only 
an overall sign ambiguity (i.e., freedom to change the sign of 
SA and 17A together), because evolving the null vectors re­
quires making a choice for the sign of ( - Xd y d)l12 -SA 17A. 

6. FIELD EQUATIONS IN CURVED SPACETIMES WITH 
ARBITRARY TIME FUNCTIONS 

In a generic space-time it is not possible to choose a 
time function for which Kab = 0, and it sometimes inconve­
nient to choose it so that a = 1. The neutrino equation and 
Dirac equations, when written in space-plus-time form, will 
then include additional terms containing the extrinsic curva­
ture and lapse function gradient. 

The linear neutrino equation V AA 'flA = 0 may be writ­
ten, using Eq. (20), this way: 

~c {DABflC + ~ KABCDP,v 

+ EAB ( ~2DnflC + ~ flDDcD Ina) } = 0 . 

(34) 
From the symmetries K ABCD = K(AB )(CD) = K CDAB together 
with Eq. (13), one finds that ~CKABCD = !KEBD , where 
K: = Ka a. The neutrino equation is therefore 

- 1 
DnflB = - V2DAB fl A + -KflB 

2 

~flADAB Ina. 
V2 

(35) 

As in the previous section, this equation yields a squared 
neutrino equation governing the evolution of 
Ma= - flAflB: 

DnMa = - i curlMa + (M ) cDa Mc + KMa 

- iEa bCMbDc Ina. (36) 

The Dirac equations (31) in this more general context 
become 

- I 
DnSB = - V 2DABSA + -KSB 

2 

~ SADAB Ina + m17B 
V2 

and 

(37) 

(38) 
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(Caution: To arrive at this second equation, one evaluates 

VAA'( - v'!n!'7JB) = VAB7JB - v'!7JB VAA'nB
A,; that is to 

say, VAA '7JA' is not simply VAB7JB' Also, note that VAB7JBis 
not the same as VBA7JB') 

For the null vectors, Xa = - SASB and Ya = 7JA7JB' 
the evolution equations are 

DnXa = - i curlXa + (X )CDaXc + KXa - iEa bCXbDc Ina 

(39) 

and 

DnYa =icurlYa - (y)CDaYc +KYa +iEabcYbDc Ina 

-/\/2m( - Xd y d ) -1/2 Ea bCXb Yc' (40) 

7. DISCUSSION 

The objective of the foregoing formulations is to expose 
the manner in which the neutrino and Dirac equations gov­
ern the evolution of spatial fields. The fields are spinor fields, 
but a spinor may be regarded as the square root of a spatial 
complex null vector. The only ambiguity in this picture of a 
spinor field is the overall sign: A null vector field has two 
square roots. The sign of a spinor field has no geometric 
manifestation. It can be determined only by comparison 
with other spinor fields. If all spinor fields underwent a 
phase change of 1T rad, there would be no physically obverva­
ble consequence. In practice, the sign of a spinor is fixed 
relative to some reference spinor. For example, if 0 A is a 
reference spinor, then the sign of f..L A is fixed by the direction 
of the complex vector O(Af..L B)' Reversing the sign of f..L B re­
verses the sign of this complex vector (provided 0 A is 
unchanged). 

The field equations for spinor fields allow one to deter­
mine the fields at later (or earlier) times, given appropriate 
initial data on one hypersurface of constant time. For a neu­
trino field, the appropriate data are a spinor field (without 
constraints) on the hypersurface. Given a null vector field 
Ma on one hypersurface, therefore, the field equation (36) 
serves to define the null vector field (and hence its square 
roots) all over space-time. For a Dirac field, initial data are 
two (unconstrained) null vector fields Xa and Ya on the ini­
tial hypersurface. Their evolutions are governed by the field 
equations (39) and (40). 

Of course, the physical fields are the spinor fields, not 
the null vector fields. Working with the square of the spin or 
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field not only introduces a sign ambiguity, but also causes 
the linear spinor field equations to become nonlinear. It is 
usually desirable to work with the linear field equations (35) 
and (37) and (38) which govern the evolutions of spin or 
fields themselves. For such calculations it is convenient to 
employ a normalized basis {o A ,LA :0 A LA = I} related to spa­
tial geometry by Eq. (15). It is possible to choose such a basis 
to satisfy DnoA = 0 = DnLA. Using a basis ofthis type, an 
arbitrary spinor f..LA = aOA + bLA is specified by a pair of 
complex numbers a and b. The evolution of f..L A is determined 
by the time derivatives of a and b; these derivatives are easily 
read out from equations like Eq. (35), using Eq. (16) and 
(17). 

The 3-plus-l interpretation of spinor field equations 
presents a couple of difficulties which the foregoing discus­
sions are intended to circumvent. A spinor is frequently re­
garded as a set of components which are referred to a space­
time tetrad. As such, it is not evident how to specify a spinor 
using only intrinsic spatial geometry. Instead, it is appropri­
ate to think of a spinor basis as defining a spatial triad (15), or 
to regard a spinor as a square root of a spatial null vector. 
Another difficulty arises if one attempts to express the time 
derivative of a spinor field as a Lie derivative. Spinors are 
intimately related to space-time conformal geometry, and 
there is no satisfactory way to define a spinor Lie derivative 
except along a conformal Killing vector field. This difficulty 
is manifested in the fact that a null vector Ma does not gener­
ally remain null when Lie transported. A derivative such as 
D n , however, does provide a useful notion of the time deri va­
tive of a spinor field. Using equations like Eq. (19), Dn de­
rivatives of tensor fields can always be converted to conve­
nient Lie derivatives. 

'The notation here is comparable with that adopted in the following three 
references, which contain more discussion: R. Geroch, "General Relativ· 
ity," lecture notes at the University of Chicago (1972) (duplicated but un· 
published); L. Smarr, "The Structure of General Relativity with a Numeri· 
cal Illustration: The Collision of Two Black Holes," Ph.D. dissertation, 
University of Texas (1974); L. Smarr, andJ.W, York, Jr., Phys. Rev. D 17, 
2529 (1978). 

'R, Penrose, The Structure of Spacetime, Battelle Rencontres, edited by C. 
Dewitt, and J.A. Wheeler (Benjamin, New York, 1968), 

lThe cross product of vectors u" and v" is E"bcubV", Using the metric to 
convert this to a one form gives Eabc uhv", which is the negative of the cross 
product (- Ea h,UhV..) of the one forms Ua and Va' The difference in sign 
arises from the use here of a negative definite spatial metric. 

'W.A. Bade, and H. Jehle, Rev. Mod. Phys. 25, 714 (1953). 

Paul Sommers 2571 



                                                                                                                                    

The Dirac inverse spectral transform: Kinks and boomerons a) 

JerOme JP. Leon b) 

Laboratoire de Physique Theorique. Universite Mohamed V. Faculte des Sciences. Rabat-Maroc 
and Laboratoire de Physique Mathematique. Universite des Sciences et Techniques du Languedoc. Montpellier cedex. 
France 34060 

(Received 9 August 1979; accepted for publication 19 October 1979) 

The inverse spectral transform (1ST) is derived when using the eigenvalue problem for the one­
dimensional Dirac operato!,: 
(D) = ialdldx) + i(;O o-q), a J = (d _0\), 
where the potentials ij and j have nonzero asymptotic values. The method used is of AKNS type. 
It is shown that the nonlinear evolution equations (NEE) obtained are of differential type at any 
order (and not of integro-differential type). Some particular solutions are studied, and it is shown 
that their special behavior is a direct consequence of the nonzero boundary condition on (D). 

I. INTRODUCTION 

This paper is devoted to the derivation of a new class of 
nonlinear evolution equations (NEE) whose particular fea­
ture gives rise, in certain cases, to "kinklike" solutions I and 
"boomerons" solutions,2 that is to say, solitons that come 
back. 

tions, namely, kinks and boomerons, which correspond to an 
arbitrary discrete spectrum of the spectral data. It will be 
shown that the emergence of these special solutions is entire­
ly owing to the nonzero asymptotic values of the potentials. 

Some of the results have been previously reported in 
Ref. 3 and performed independently by Gerdjikov and Ku­
lish in Ref. 4. In Ref. 3 the basic method is of the AKNS 
type5 for the one-dimensional Dirac system: 

{ilT3 ~ - iqPl - qllT2 + mlT2 } Y = 3" Y, (1.1) 

that is to say, for a Zakharov-Shabat system6 in which the 
potentials ij = - ql - iq3 + m and j = - ql + iq3 + m go 
asymptotically to the same real constant m. In a different 
way, it is shown in Ref. 4 that the Zakharov-Shabat system 
whose potentials ij and j verifies the asymptotic behavior 

j.ij _ m 2, m2EC(; (1.2) 
Ixl~oo 

possesses a complete class of Hamiltonian systems. 
Since only the final results of the inverse problem are 

workful for I.S.T., we shall not develop its procedure which 
is already well known.7 For a detailed treatment, the reader 
will refer itself to Ref. 4 or to unpublished work. 8 We prefer 
to focus our study at first on the derivation of the class of 
solvable NEE through the AKNS method with the asymp­
totic condition (1.2) on the potentials. Secondly, an impor­
tant point which is often neglected is that the NEE obtained 
are of differential type even if the generator operator is of the 
integrodifferential type. This statement will be proved for 
the class of NEE obtained here (for the Z.S. case, see Ref. 9), 
and the structure of the demonstration surely hold for other 
classes of NEE. We shall thirdly study some special solu-

II. THE INVERSE PROBLEM 

We consider the one dimensional Dirac equation 10 

D {. d ,(0 
: 1lT3 - + 1 _ 

dx r 
(11.1) 

lT3=(~ _1°). 

in which the potentials ij and j verify the asymptotic bound­
ary conditions 

j - r ±, ij _ q ±, r+q+ = r"q" = m2, m2EC. (11.2) 
±cc ±oo 

In spite of energy 3" we better use the complex momen­
tum k defined by k 2 = 3"2 - m 2

• Then the eigenvalue 3" ap­
pears as a double-valued function of k which is represented 
by the two determinations 3" = EE, E = ±, where 

E (k ) = I k 2 + m211/2 
X exp~! Arg(k + im) + Arg(k - im) J, 

2 

~ + liJ< Arg(k + im) < ~ + liJ, 
2 2 

-3ff ff --+ liJ < Arg(k - im)< - + liJ, liJ = Arg(m). 
2 2 

(11.3) 

Thus, D will represent two systems whose solutions are the 
eigenfunctions Y«k,x) with the eigenvalues EE (E = ±). 

The right and left Jost solutions of D are defined by the 
asymptotic behaviors 

( 

- iq+ ) EE + k 112 --- 'k l/f(k,x)-1/J~(k,x) = ( ----u:- ) EE 7 k e' X, 

(11.4) 
as x- + 00 : 

if«k,x)-if~(k,x) = (EE + k )1/2(~)e-ikx, 
2k EE+k 

")This work has been done as part of the program "Recherche cooperative sur Programme no. 264: Etude interdisciplinaire des problemes inverses." 

")Physique Mathematique et theorique. Equipe de recherche associee au C.N.R.S. no. 154. 
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as x---+ - 00 : 

The functions if/(k,x) and tfJ E(k,x) are analytic in k in the 
upper cut half-plane I k Ilm(k ) > 0, kt[im,i 00 e iOJ] 1, continu­
ous on the real axis, and continuous on the right on the cut. 
For real k, the reftexion coefficient to the right R E(k) and 
the transmission coefficient TE(k) are displayed by develop­

ing the solution tfJ E(k,x) on the basic solutions ,r(k,x) and 
¢E(k,x): 

<I> E(k,x) = _1 _ ¢E(k,x) + R E(k) f/!E(k,x), (11.6) 
r(k) TE(k) 

_1_ = I <I> E(k,x), 1/l (k,x} I, 
r(k) 

R E(k) = I ¢E(k,x), tfJ E(k,x) I, 
TE(k) 

(11.7) 

where the symbol if,g I denotes the determinant of the matrix 
made with column vectorsjandg. Starting with the analytic 
properties of tfJ and f/!, and formula (11.7), it can be shown 
that lITE(k) is analytic in the upper cut half-plane. We shall 
assume throughout that the zeros (k ~, n = l, ... ,N,) of 
lITE(k) are simple and not on the real axis. They corre­
spond to the bound states to which we associate the 
coefficients 

c~ = R E(k) {~r(ktl} -I I . (11.8) 
rE(k) dk k=k~ 

The set of spectral data is then defined as 

y= IRE(k),kER;k~,C~,(n= 1, ... ,N,);E= ± J. (11.9) 

Conversely, Y, m2
, and q+ being given, one can com­

pute the potentials ii and f via the so called inverse problems: 

( 
0 - (q - q+) ) + 2 

[(T3,K(x,X)] = (r _ r) 0 ' rq = m , 

(11.10) 

where K (x,y) is solution of the Marchenko equation 

F(x + y) + K(x,y) + LX> K(x,u)F(u + y)du = 0, y>x, 

(II.lt) 

and F(x + y) is given from the spectral data through 

F(x,y) = 2: {_I_J+"" kdk RE(k)f/!g(k,x)Tf/!g(k,Y)(TI 
E 21T - "" EE 

- i I C! n f/!g(k~,x)Tf/!~(k~,y)al' k
E 

} 

" EE(k~) 
(1I.l2) 

The asymptotic behavior of ii and f as x goes to - 00 is given 
from q+ and r+ by4 

q+ r { i f + 00 dk log -::- = log -:;- = L - -
r r • 21T _ "" €E 
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(11.5) 

N' E+ k I } xlog(l+ IRE(k)12)+ ~log:E_k k=k~ . 

III. THE INVERSE SPECTRAL TRANSFORM 

A. Introduction and fundamental results 

(11.13) 

Assuming for V = T (f,ij) a t dependance, we construct 
now a class of NEE solvable by I.S.T. for D. 

We use the following notations: F = T (F1,F2) and 
G = T(G1,G2) being two functions ofR in (:2, we define the 
"scalar product" of F and G by 

(FI G) = I_+",,"" (F(x) I G(x»dx 

= I_+ ",,"" (F1(x)G1(x) + F 2(x)Gix»dx. (111.1) 

Y' = T(y1 ,yD and ZE = T(z1~) being two solutions of D, 
we set A E = T (yr zr ,y~~). We shall use particularly 

2(<1> r(k, X)2) 
A r(k,x) = r(k) tfJHk,xf ' 

(
tfJ ~(k, x)",r(k, x») 

A Hk, x) = TE(k)2 tfJ ~ (k, x)f/!~ (k, x) , 

A Hk~,x) = (~_I_)-1 
dk r(k) 

( 
tfJ ~ (k, x)¢~ (k, x») I 

X tfJ~(k,x)¢~(k,x) k=k:." 

(1I!.2) 

(111.3) 

(IlIA) 

The main tool of the inverse method consist at first of a 
set of relations between the scattering data and some "scalar 
products" from which arise V(x,t) and V,(x,t) (the sub­
scripts "t " or "x" mean partial derivatives with respect to t 
or x, respectively): 

(L +V IA ~ (k,x» = kR E(k,t), 
(111.5) 

(a3 v. /A ~ (k, x» = R ~(k,t), 

(L +V IA ~(k,x» = 0, «(T3V, IA Hk, x» = T,(k,t), (111.6) 

(L + V I A ~ (k ~, x» = k ~ C ~ (t), (111.7) 

where the operator L + is defined by 

(

a 2 -IX --- r q 
1 ax - 00 

L+= -
2i 2-JX-- q q 

- "" 

27 f:"" 7 ) 

- ~+2 iiJx f . 
ax - 00 

(111.8) 

Moreover, if T, (k,t) = 0, then the number (N') and the po­
sition (k ~) of the bound states are constant in time, and we 
have therefore 
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~ C~(t). 
dt 

These scalar products are computed in Sec. IIl.B. 

(111.7 bis) 

To achieve the inverse method, we need secondly a rela­
tionship between some evolution of V(x,t), namely, NEE: 

a 3 V, = n (L +)V, (III.9) 

and the corresponding evolution of the spectral data. 
[n (~)/~ is an entire function of ~ .) This relationship arises 
from the existence of operators Land L .. such that (L +Y, 
which acts in the x space of potentials, is the adjoint of (L t 
which acts in thex space of functions A E and such that A E is 
the eigenfunction of (L t with the eigenvalue (eE t. The 
fundamental properties of Land L + are studied in Sec. III. C. 
These properties allow us to derive, in Sec. IIl.D, the follow­
ing powerful relations: for any entire function n (€E)/ eE of 
EE, 

(n (L +)V IA ~) = k n ~~) R «k,t), 

(n (L +) V I A ~ > = 0, 

(n (L +)V IA ~) = k n ~~) I b k:,C~(t). 

(111.10) 

(I1Lll) 

(III. 12) 

If V (x,t) evolves now according to the NEE (III.9), it is 
obvious to verify from Eqs. (llL5) and (Ill. 10) and (III.6) 
and (III. I I ) that the spectral data evolves according to the 
trivially integrable equations 

R ~(k,t) = k n ~~) R E(k,t), T~(k,t) = 0, (I1I.13) 

and thus 

~kE =0 dt n , 
(III. 14) 

which gives from Eqs. (IIL7) and (IIU2) 

~C~(t)=kn(EE) I C~(t). 
dt eE k=k~ 

(III. 15) 

At this point, the nonlinear evolution problem (1Il.9) 
together with some initial data Vo(x) = V(x,to)issolvableby 
the inverse technique: 

Vo(x~Y(to)-Y(t ~ V (x,t), 

i.e., first solve the direct scattering problem for D at to, obtain 
then Y (t ) from Y (to) by (111.13) and (III. 15), and solve at 
last the inverse problem at t: obtain V(x,t) from Y(t) 
through inversion formulas (II. IO)-{IIl. 12). 

The class of NEE solvable by this method is strongly 
related to the form of the linear eigenvalue problem used. 
The problem offinding an adequate scattering problem for a 
given NEE is still open, and it seems that, so long as one can 
construct new inverse problems, one can find new classes of 
NEE (exept when there exist a transformation which gives a 
class from another?.I!) 

B. Computation of the scalar products 

Let us start from euqation D for Y«k, x) and Z «k, x), 
written into the following form: 
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X M<- ~ yE = M EYE} ( _ . E 
TZ~ = TZEM< ' - , 

or into a "matrix Schrodinger" type form3 ,ll: 

Y~x =NY< } 

TZ~x = TZ< IN ' 

N = (Hj - m
2

) - k 2 qx ). 
F" (,q - m 2

) _ k 2 

(111.16) 

(111.17) 

Using Eqs. (IIU6) and (III.17), it is obvious to show the 
identity 

~(TZ<ia Y< - TZEia Y<"\ dx 2x xl! 

(111.18) 

Integrating the two sides of Eq. (Ill. 18) for x on R, one gets 
from the definition of A <, 

[ TZ<ia Y< - TZ' fa Y<] + '" = 2(a V jA <) 2 x x 2 '-00 3 x • (I11.l9) 

Since 'x and qx are integrable on R, and A ~ bounded for 
n = 1,2,3, then the right hand side of Eq. (III. 19) exists. Its 
left hand side can be calculated for A < = A ~.2,3 successively, 
by using the formulas (II.4) and (11.5). Moreover, using the 
identity immediately derived from definition (111.8) of L ': 

(III. 20) 

one get the first part offormulas (III.5)-{I1l.7). Using now 

Eq. (III.l6) and the fact that TM<al + a2M< = 0, it is easy 
to prove the following identity: 

~ ( TZ<ia2Y~) = TZ«ial M7)Y< = (a3 V, I A ,. (111.21) 
dx 

Since (a3 V, jA ~ ) exists for n = 1,2,3, we integrate both 
sides ofEq. (111.21) on R. The asymptotic behaviors of the 
Jost functions give rise to the second part offormulas (111.5) 
and (111.6). Making then the assumption that k ~ does not 
depend on time t [which will be true as soon as Vevolves 
accroding to Eq. (III.9»), we deduce formula (IIL7bis) from 
the identity (111.21). 

C. The operators Land L + 

The existence and adequate properties of operators L 
and L ' allow us to go from the x space, in which the evolution 
for V is nonlinear and thus rather difficult to solve, to the k 
space in which the evolution for the spectral data is trivially 
integrable. It is already a well known fact that this procedure 
is formally similar to the Fourier transform technique for 
linear cases.5 

Let L be the matrix operator 

(

a 2 ~ 1'" ~ - -- q r 
1 ax x 

L= -
2i 2, LX> , 

(00 ) -2q L q 
x 00 ' (111.22) 

~+2 , r q 
ax L 

and L 'the operator defined by Eq. (111.8). We have to deter­
mine at first the spaces Sand S' which act, respectively, on L 
and L '. From the definition off unctions F and G and of L 
and L ., we have 
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Hence, 

s+ = [F: R---+C2 /J~ "" (u2 VI F)dx' exists}, 

S = [G : R---+C2
/ f" (V I G )dx' exists}. 

(111.23) 

(111.24) 

(11125) 

(111.26) 

Theorem 1: (L +Y V exists for all integer n:> 1, and the 
components of this vectorial function are "polynomials" 
with respect to q, r and their successive x derivatives which 
vanish as Ixl goes to infinity (such a function will be called 
for short a polynomial). 

To prove the theorem, we shall make use of the two 
following lemmas: 

Lemma 1: If F belongs to S .. then 

(LU2-U2L+)F=U2V(U2VIF). (111.27) 

In particular, if Fis orthogonal to u2 V, we have 

u2L +F = LU2F. (111.28) 

Property (111.27) is immediately derived from Eqs. (111.23) 
and (111.24). In the same way, and using partial integration, 
one can prove the second lemma: 

Lemma 2: If Fbelongs to S+, G to S, and 
limx~"" (F I u3G) = 0, then 

J: "" [(F I LG) - (G I L +F)} 

= - (F I u3G) -2 L"" (V I G) J: "" (iu2V I F). 

(111.29) 

Ifmoreover (u2 V I F) exists and limlxl~"" (F I u 3G) 
= 0, then 

(F I LG) = (L +F I G ) . (111.30) 

We are now able to prove theorem 1 by induction with 

the following induction hypothesis: (Hn): (L -lV, 
r- "" (U2 V I(L +)PV) exist and are polynomials. 

(Hn) is true for n = 1, and indeed we have 

L-V= ~( rx ) 
2i - qx ' (111.31) 

J: "" (u2V I L +V) = - !(rq - m2). (111.32) 

Supposing that (Hn) is true, we prove now that (Hn +1 ) 

is then true. Since (L +Y V belongs to S+, then (L ·Y +1 V ex­
ists. Let us insert F = (L +Y V into formula (111.23): 

(L +)"+1 V = - ~iU3~ [(L +)"V} 
dx 

- V J: "" (u2 V I (L ·Y V). (111.33) 

Thus (L +Y + I V is a polynomial (use Hn)' It remains to 
prove that r_ "" (U2 V I (L +Y + I V) exists and is a 
polynomial. 
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We can use lemma 2 for F = (L +)qv and 
G = iu2(L +)" - qv, for O<q<n. Indeed, since (L +)qv and 
(L +)" - qv are polynomials, we have 

x __ - 00 

Hence, lemma 2 gives 

J: '" [( iU2{L +Y - qv I (L +)q +1 V) 

- (Liu2(L +)" - qv I (L +)qV)} 

= (iupzCL +Y - qv I (L +)qV) 

(III. 34) 

+2 L'" (VI iu2(L+)"-qV) L"" (iu2VI (L+)qV). 

(111.35) 

We have moreover (V I iu zCL +)" - q V) = 0 and thus 

L"" (VI iu2(L+)"-qV) = - J:"" (Vl iu2(L+y-qV) 

(111.36) 

is a polynomial for O<q<n [for q = n, we have 
(U2 V I V) = 0]. Thus, the right hand side of Eq. (111.35) is a 
polynomial, namely, Pq{V). Moreover, we can make use of 
Eq. (111.28) for F = (L +)" - qv: 

Lu2(L +Y - qv = u2(L +Y - q +1 V. (111.37) 

Then formula (111.35) writes 

J: "" [(iu2(L +)" - qv I (L +)q+1 V) 

- (iu2(L +)" - q+1 V I (L +)qV)} = Pq(V). (111.38) 

Let's now add the formulas (111.38) written for q = 1,2, ... ,n; 
we finally get 

J: '" [(iu2 V I (L +Y +1 V) - (iu2(L +Y +1 V I V)} 

(111.39) 

However, since T(iu2) = - iu2 , we have (iuzCL +Y +1 V I V) 
= - (iu2V I (L +Y +1 V). Then, r_ "" (u2 V I (L +Y +1 V) ex­

ists and is a polynomial, which ends the proof of theorem 1. 
We shall make use of another important theorem: 
Theorem 2: (L )"u2 V exists for all positive integer n, and 

we have 

(111.40) 

Proof Eq. (11I.40) is true for n = 1 [use lemma 1 for 
F = V and the fact that (u2 V I V) = 0]. 

Suppose now that Eq. (111.40) is true for n; we show that 
it is true for n + 1. We use lemma 1 for F= (L +)"V and we 
notice that, from theorem 1, (u2V I (L +)"V) = 0, to show 
that 

(L Y +1 U2 V = Lu2(L +)" V = uzCL +)" +1 V. 

It obviously results from theorem 2 that 

(VI(L)"u2V) = (VluzCL+YV) =0. 

(111.41) 

(111.42) 

This last property allow us to prove another singular 
theorem: 
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Theorem 3: 

(L ')"V = (V)", nE N, 

where the operator V is 

-+2f q 

(

a iCC -
V= ~ ax x 

2i 2q i ac 

q 

-2f icc f ) 

a x _ iCC _ . (111.43) 
- --2 q r ax x 

Proof the above definition gives 

I dF 100 

L'F= --:-0'3-+ (O'zVIF). 
2l dx x 

Using Eqs. (III.23) and (111.44), 

(V - L ')F= (0"2 V I F), 

(111.44) 

(III.45) 

and making F = Yin Eq. (111.45), we show that theorem 3 is 
true for n = I [use (0" z V I V) = 0]. Let us suppose that theo­
rem 3 is true for n; we prove that it is true for n + l. To do 
that we set F = (L 'Y V = (vy V in Eq. (111.45); we get 

[(vy +1 - (L ')" +1 J V = (0"2 V I (L 'YV) , (111.46) 

which is zero from Eq. (111.42). 

D. Evolution equations 

With the help of the above theorems, we are now able to 
derive the following properties: 

Property I: Forp and q integers such thatp,> 1, q,>O, we 
have 

y~ J~ cc «L ')PV I LAqA~) 
= (€E)q«L ')PV IA ~), i = 1,2,3, (IlI.47) 

where LA is the cutoff operator deduced from L by changing 
s; into S~. The meaning of Eq. (111.47) is that A 7 is the 
eigenfunction of L q with the eigenvalue (€E)q. 

Property 2: For any positive integer n, 

l~~foo (L'VILA
n
A7)= «L'y+IVIA~). (IlI.48) 

The meaning ofEq. (111.48) is that (L 'Y is the adjoint opera­
tor of(LY. 

Proofofproperty 1: Starting with the identities deduced 
fromD: 

i ~ (yrZD - iq(YrZ~ + Y~Zn = 2€EyrZr, (IlI.49) 
dx 

i ~ (n Z~ + Y~Zn = 2i(fY f Zf + qY;Z~), (111.50) 
dx 

and integrating Eq. (I1I.50) on the segment [x,A ], we prove 
that there exist scalar bounded functions 8j (A ) such that 

(111.51) 

The functions 8,(A ) are given by 

81(A) = ~T«k )Z( T ¢ «k,A )O"I¢ «k,A », (III.52) 

82(A) = ~T«k )Z( T¢ «k,A )O"Iif/(k,A », (III. 53) 

83(A) = ~[~_1_] -I .( TtP'(k,A )O"I¢E(k,A» I . 
dk TE(k) k= k:, 

(III.54) 
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At this point, one must notice that, contrary to the case r ± 

= q ± = 0, the functions 81,2 (A) have no limit as A- 00, 

This is the reason why we must use the cutoff operator LA 
inspite of L. 

By induction on Eq. (111.51), we get 

LAnA~=(€EYA~+ i (€Ey-18j (A)L/- 10"2 V, 
,~ I 

nEN. (111.55) 

Thus, for p'> 1 and q,>O: 

f~ oc «L ')PV ILA qA ~) 

= (€E)q J~ 00 «L ')PV IA 7) + ,tl (€E)q -18;(A) 

(111.56) 

WhenA goes to infinity, the second term of right hand side of 
Eq. (III.56) goes to zero. Indeed we have that 8j (A ) is a 
bounded function of a, and 

-J: = «L ')PV IL/-
I 

O'2 V) 

- «L')PVIL'-IO"ZV) =0, 
A~oc 

by using theorem 2 and Eq. (III.42). This ends the proof of 
property 1. 

Proof of property 2: If Fbelongs to S' and G is a bounded 
function, one can show by partial integration that 

J~oc !(FILAG)-(L'FIG)J= -(FIO'3G)(A). 

(II1.57) 

SettingF= (L ')PV and G = (LA)q-1 A 7 in Eq. (III.57) 
leads to 

J~oo !«L')PVI(LA)QA 7)-«L,)p+1 VI(LAy- IA 7)J 

= - «L ')PV 10"3(LA)Q-1 A 7)(A). (111.58) 

When A goes to infinity, the right hand side ofEq. (III.58) 
goes to zero, and we immediately obtain Eq. (III.48) by 
induction. 

At this point, we use properties 1 and 2 to show that 

«L ')" +1 ViA 7) = (€E)"(L 'v IA 7). (111.59) 

Property 3: For any entire function fl (€E )/(€E) of €E, 
we have 

(fl(L'),VI A 7)= fl(€E) (L'VI A 7). 
€E 

(III. 60) 

Use now Eq. (111.60) together with Eqs. (111.5)-(111. 7) to get 
formulas (111.10)-(111.12). 

At this point the nonlinear evolution problem (III. 9) is 
solved by I.S.T. However, one must notice that we have ad­
mitted the existence of a solution of Eq. (111.9) and that the 
inverse problem is solvable for any value of t. To prove the 
existence of a solution ofEq. (111.9), one would deduce from 
the evolution of Y the NEE (III.9). This would be possible 
with the help of a closure theorem for the functions A 7· 
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(Such a result had been obtained by Kaup in the case r ± 

=q± = 0. 15
) 

IV. SOLITONS 

Solitons are known to be the solutions of NEE when the 
associated spectral data reduce to the discrete spectrum 
only. We shall study here two representative cases corre­
sponding to a set of spectral data consisting of one and two 
bound states, and no reflection coefficient. Although we do 
not want to enter in a complete study of the properties of 
these solutions, we shall point out the strong differences be­
tween the Zakharov-Shabat (ZS) case and the Dirac (D) 
case (we shall thus simplify the hypothesis). 

A. Single bound state: "kinklike" solution 
Suppose that Y consist in a single zero of l/T+(k ) and 

R £(k) = 0 for real k. The "Fourier transform" of Y is then 
from Eq. (11.12): 

F(x+y)= _iMCeik(x+y), 

(IV.l) 

1 (-iq
+ M=-

2E E+k 

where C is the bound state constant (11.8). The noninversible 
matrix M possesses the property 

M(M + i+) = o. (IV.2) 

Writing now the inversion formula (11.11), one can see that 
the kernel K (x,y) becomes separable; thus, we set 
K (x,y) = A (x)eikY. The inversion equation reduces to 

-iCM+A(X){e- ikx + 2~ MeikX } =0. (IV.3) 

The system (IV.3) of four equations reduces, by using prop­
erty (IV.2), to a system of two equations. 

The solution of the inverse problem is given by 

( 
0 - ij + q+) [0"3' A (x)eikx ] = _ + 

r- r 0 ' 
(IV.4) 

which gives 

_ + (Cq+/2ikE)(E - k IE + k )eikx + e - ikx 
q(x) = q .., (IV.5) 

(Cq+ 12ikE )e'kx + e - lkx 

_ (Cq+/2ikE)(E +kIE_k)eikx+e-ikx 
f(x) = r+ .. (IV.6) 

(Cq+/2ikE)e'kx + e -Ikx 

Before going further on, notice that ij and r possess the right 
asymptotic behavior [i.e., formula (11.13) holds]. 

Assuming now that rand ij evolves according to the 
NEE (111.9), then the constant C evolves according to Eq. 
(111.15), i.e., 

C (t) = Co exp( k n ~E) t). (IV.7) 

Setting 

C~+ 20 
-- =e 
2ikE ' 

E-k 2b 
--- =e 
E+k ' 

(IV.8) 

we can write ij in the form 
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ij(x,t) = q+eo coshb { + 1 (thb )th [ik 

(x- ~ n<:) t)+a]}. (IV.9) 

This "th" form is known as a kink 11 which moves with con­
stant speed v = ReI ( - i/2E)n (E) J. 

In the ZS case a single pole does lead to a soliton solu­
tion. 15 Indeed, setting here q ± = r ± = 0, we get the trivial 
solution ij = r = o. Thus, the D case is strongly different 
from the ZS case not only because of the emergence of a 
solution when the spectral data reduce in one single bound 
state, but also because of the particular feature of this solu­
tion, which was reserved until now to solutions of the sine­
Gordon equation. 

B. Two bound states: "boomeron" solution 
We now assume that the spectral data consist of two 

bound states located at k + and k - [zeros of l/T+(k) and 
l/T-(k ), respectively], and no reflection coefficient. We shall 
assume moreover for simplicity that q ± = r ± = m, m real. 
In this case the stability of the inverse problem demands 
k + = k -. Indeed, Eq. (1.13) leads to 

E++k+E--k-=-...:........:..-=--- = 1, (IV. 10) 
E+-k+E-+k-

that is to say, 

(k+)2 _ (k+)2 + m 2 

(k-)2 - (k-? + m 2 
(IV. 11) 

Since Im(k ±) > 0, the solution of Eq. (IV. 11 ) is k + = k-. 
To simplify at most the results, we set moreover 

k + = k - = iu (m > u > 0). The method is essentially the same 
as that used in Eq. (IV.a); thus, we give only the final result: 

ij(x,t) - m 

= 2U[ ( ~ + i )eiU(lJ/E)t + ( ~ _ i )e - iU(f},.IE)t] 

XCOSh-1{2U(X-Xo(t)- 2~ nt-w)}, (IV. 12) 

where n, and no are, respectively, the even and odd parts of 
n (E), where 

1 C 
w= -log-O, 

2u 2u 
(lV.13) 

and where xO<t ) is a solution of 

COSh[ 2U(Xo + w + ~~ not)] 

= cosh [ 2U( 2~ not + w)] + ~ COSh(i ~ net ). 

(IV. 14) 

Notice that we have assumed that n (E) is purely imaginary, 
in order to have a real dispertion relation.5 

The most remarkable feature of these solutions is that 
the center of motion of the envelope soliton has a speed that 
evolves in time as soon as m is different from zero. [Setting 
m = 0 in Eq. (IV.12) leads to Xo = 0 and thus the soliton 
moves with constant speed (i/2E)no.] Indeed, this speed is 
given by 
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v(t) = [(i/2E)flo sinh [2u«i/2E)flot + w)] 

+ (im/2E)fle sinh(iu/E)fle t J/ 
sinh [2u(xo + w + (iu/2E)flot)] . 

At this point, one must notice that the position 

(IV. 15) 

[xo + (iu/2E)flot] of the center of the soliton has a definite 
sign. Indeed, we have from Eq. (IV. 14) 

cosh [ 2U(xo + w + ~~ flot) ]>1 +; > 1, (IV. 16) 

and the continuity of the function [xo + (iu/2E )flot ] ensures 
that it has constant sign. Without loss of generality, we sup­
pose that it is positive. Then the sign of v(t ) is that of its 
numerator. It is possible to show that v(t) changes its sign 
when passing through the value zero, that it is asymptotical­
ly constant, and that v(t = + (0) = - v(t = - (0). This 
solution is then a soliton that comes back; it is called a 
boomeron. 

Let us list for instance a few properties of the boomeron 
of the nonlinear Schrodinger equation which is obtained for 
fl (E) = 4iE 2, and which is 

ij, = iijxx -2i ij2ij* +2im2 ij (1 = ij*). 

v(t) becomes an odd function of t because flo = 0, and goes 
asymptotically to ± 4E 2 at ± 00. Another difference be­
tween the ZS and D cases arises then from the fact that the 
corresponding solution in the ZS case (m = 0) does not 
evolves in time, because we have assumed that k = iu and 
flo = ° (see Ref. 5, p. 279). 
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Explicit forms of U3 and U4 matrices as functions of a single adjoint vector are displayed. 
Parametrizations of the coset spaces U(N + r)/(UN XUr) are discussed, most explicitly for 
r = 1 and 2, and related, for N = 3 and 4, to the results for U3 and U4 matrices. 

1. INTRODUCTION 

There has always been interest in and a genuine need for 
suitable explicit forms ofparametrizations of unitary matri­
ces. In the past, this was true for Lagrangian theories of 
chiral symmetry based on nonlinear realizations of SUN 
X SUN. 1-4 At present, it holds true for the study of field 
theories, which possess instanton solutions. This area in­
cludes study ofCP N models,5.6 and of generalized 0' models. 7 

The former may be viewed8 as nonlinear realizations of an 
SU(N + 1) symmetry in which a UN subgroup is realized 
linearly; the latter may be similarly viewed as nonlinear real­
izations of a U(N + r) symmetry in which a UN X Ur sub­
group is realized linearly. 

This paper displays and gives proofs (rather than deri­
vations) of a variety of results to which, for ease of reference, 
we attach Roman numerals, regarding unitary matrices that 
have been discovered at various times during the last ten 
years. Section 2 gives results for U3 matrices, written in 
terms of a single octet vector. The simplest result, result III 
below, has been given before.3 Section 4 applies results given 
in Sec. 3 regarding SU4 adjoint vectors, to give results for U4 
matrices written in terms of a single adjoint vector. These 
results are new. Section 5 discusses the coset space 
SU(N + 1 )/uN writing SU(N + 1) matrices in terms of sets 
of Goldstone fields for nonlinear realizations of SU (N + 1) 
in which UN is realized linearly. 8 Result VIII underlies8 re­
cent work of Cremmer and Scherk.9 The N = 3 case of result 
IX has been used by Salam and Strathdee. 10 Section 6 dis­
cusses the coset space U(N + r)/(UN XUr) writing 
U(N + r) matrices in terms of appropriate sets of Goldstone 
fields. Completely explicit results are given only for r = 2, 
and arbitrary N, but the methods used extend with increas­
ing complication to higher values of r. The results of Sec. 6, 
which are new, have been used in Ref. 7. The relationship of 
results of later sections to those of earlier sections is also 
pointed out. For example, results III and IV of Sec. 2 reduce 
upon appropriate specialization of the octet vector in terms 
of which they are given, to the N = 3 cases of results VIII 
and IX of Sec. 5. Result VI of Sec. 4 similarly reduces to the 
N = 4 case of result XI of Sec. 6. Some of the discussion of 
Sec. 5 could have alternatively been given by reduction of the 
r = 1 case of the results of Sec. 6. 

Finally we make reference to an important and elegant 
paper by Barnes and Delbourgo, II which deals with the con­
struction of SUN quantities out of a single adjoint SUN vec­
tor. This paper is essentially complementary to the present 

work. It would provide an alternative approach to the deri­
vation of results such as are given in this paper, but the non­
trivial task of extracting simple explicit forms from its very 
general discussion was not undertaken there. 

2. PARAMETRIZATION OF U3 MATRICES 

We use standard notation for A. matrices, the tensor d ijk , 
etc., and refer to previous work for their properties. 10 

Let Mi denote a real octet vector, then as usual 
Ni = dijk~Mk is real octet vector in general linearly inde­
pendent of Mi' Also X = MiMi' Y = MiNi are SU3 invar­
iants. To prove our results, it will suffice to note the 
following 

dijkMjNk = iXMi' 

dijk~Nk = ~YMi - -lXNi, , (2.1) 

NiNi =-lX 2
• 

Our various parameterizations are labelled by Roman nu­
merals throughout the paper. 

I. If B, C, and D are three real functions of the SU3 
invariants X and Y related by 

1 + B2 +2CD = XC 2
, (2.2) 

then U(M) given by 

nU(M) =D -jCX +i(j-C 2 y +BD) 

- iA..M (l + iB) + A..NC, 

1 n 12 = (1 + B 2)(X + D 2) 
+ JBCY(2 + CD) + ~C4y2, 

is a unitary matrix. 

(2.3) 

(2.4) 

Proof The result follows straightforwardly from the 
usual rules for A.-matrices and (2.1). 

The general result I is complicated chiefly because B 
contains Yas a factor, as can be seen from parity consider­
ations when Mi is pseudoscalar. Result I contains two arbi­
trary functions of X and Y, and we may dispose of this arbi­
trariness to achieve simpler forms for U (M). Thus, we have: 

II. SetB = Oin I 
For arbitrary C (X), and henceD (X), this keeps down to 

a minimum dependence on the awkward SU3 invariant Y. 
We may dispose of the remaining freedom in II in various 
ways. 

Set C = 1 and replace Mby M / = - 2M in II, dropping 
the primes thereafter. This gives 

III. wU(M) = 1 - iX - ~iY +2iA.M -U.N, 

Iw 12 = (1 + X)2 + ~y2. (2.5) 
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Similarly, setD = 1 in II, and replaceMby - M. This gives 

wU(M) = t(2 + R) -1iC2Y + iA.M + A.NC, 

Iwl 2 
= R 2 + bC4y2, (2.6) 

C = - (1 + R ) - 1, R = (1 + X)I12. 

Other results comparable with IV can be obtained from II. 
Result III was given originally in our previous work,l where 
indication of its origin was given, as opposed to mere verifi­
cation of the unitarity of U(M) defined by (2.5). Result I 
above arose by the same method appropriately streamlined 
to minimize algebra. 

3. SU4 dTENSORS AND ADJOINT VECTORS 

A matrices for SU4 are the natural generalization of 
those for SU3, and give rise to 

A,Aj = !Dij + (dijk + ifjk)Ak. (3.1) 

The tensors d and/for SU4 naturally have those properties 
listed in reference twelve as holding for all SUn. However, 
they fail to satisfy the result 

dm(ijdk)/m = Jj>(lJDk)/' (3.la) 

true for the SU3 d tensors. Here and below, total symmetry 
must by imposed on a set of indices surrounded by round 
brackets. To state the property typical ofSU4 that its d ten­

sors obey, proceed as follows. Introduce the rth rank isotrop­
ic tensor d (r) ij ... st' with r indices, by means of 

d (r + 1) ij ... stu = d (r) ij ... sh dhtu ' 

where 

d(2\ = Dij' 

and hence 

d (3) ijk -d,jk' 

(3.2) 

In terms of such a notation for SU3, Eq. (A) can be written as 
d(4)(ijk)/ = 1!3D(ijDk)/. For SU4, the corresponding result is 

(3.3) 

This result was first given (to this author's knowledge) by 
Sudbery,12 who proved the corresponding result for general 
SU(n) and displayed the SU4 and SU5 versions of it. His 
proof used the Cayley-Hamilton theorem for SUn in much 
the same way (technically streamlined both in notation and 
in outlook) as used in Ref. 13 for deriving Eq. (A), above, for 
SU3. 

We go on to use (3.3) to discuss the vector and tensor 
world that can be realized using a single SU4 (adjoint) vector 
M,. There are in general two vectors linearly independent of 
M" namely, 

N, =dijk~Mk' 

P, =d(4)'jlm~MIMm =dijk~Nk' 

and there are three SU4 invariants 

2580 

X=M,M" 

Y = M,N, = dijkM,MjMk' 

Z = M,P, = N,N, 
= d(4),jk/ M ,MjM"M/. 
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(3.3a) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

We may exploit (3.3) to show that all the further naturally 
occurring vectors and scalars are respectively linear combi­
nations of M, N,and P, and functions of X, Y, and Z. The 
results in question are as follows 

(Q, = )dijkMjPk = !XN , + i YM" 

d'jkN;Nk = ~YM" 

dijkN;Pk = 1ZM, + i YN" 
dij"PjP" = 1XYM, + !ZN, - i YP, , 
N,P, =1XY, 

P,P, = !ZX + iy2 (= Q,M,). 

(3.8) 
(3.9) 

(3.10) 

(3.11 ) 

(3.12) 

(3.13) 

These results will enable us to state and prove our results 
regarding the parametrization of U4 matrices in terms of a 
single SU4 (adjoint) vector. 

4. PARAMETRIZATIONS OF U4 MATRICES 

The most general parametrization of a U4 matrix in 
terms of a single adjoint vector Mi (and quantities built, as in 
Sec. 3, out ofit) involves three arbitrary functions of the SU4 
invariants X, Y, and Z. Having seen result I for SU3, one 
would expect this to be very complicated and not very useful. 
Accordingly, we seek results that keep to a minimum depen­
dence on the higher order invariants Yand Z. We begin with 

V. If UEU4 is expanded in the form 

U(M) = D + (aM +{3N + rP).A, (4.1) 

then uut is a multiple of the identity if 

- ia =(3(2A +XE), 

- ir= -(3E, 

- io = aA - iY{3E - *ZrE, 

and tee real functions A and E are related by 

2AE + !XE2 = 1. 

(4.2) 

(4.3) 

Proof This is achieved by direct use of the results of 
section three to simplify UU t . 

The simplest special case found is a close relative of 
result III for U3. To reach it, set E = !, find A = 1 - /rX, and 
change M to - 2M. We thus obtain 

VI. 

OJU= 1-*X2+!Z-VY 
+ 2iA.M(1 +!X) - U.N - 2iXP, 

IOJI2= [(1 +!X)2-!ZP+4y2/9. (4.4) 

5. THE COSET SPACE SU(N + 1)/UN 

It is easy to discuss a general parametrization of the 
space, one in which U(K)ESU(N + 1) is written in terms of 
set of N complex scalar fields, the Goldstone fields of a non­
linear realization of SU(N + 1) in which a UN subgroup is 
realized linearly. 

Thus consider 

U(K) = (e + h~K 
-fK 

A.J. Macfarlane 
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in which K is a one column matrix of N complex fields, KKis 
an N XN matrix, and e,/, g, and h are real functions of the 
single UN invariant X = KK that can be built out of K. It is 
easy to verify 

VII. U (K), given by (5.1), belongs to SU(N + 1) for ar­
bitrary f(X), if 

e = 1, g = (I_Xf2)1I2, 
(5.2) 

h = - f 2(1 + g) - I . 

Simple special cases arise by appropriate choice off 
VIII. Iff= a -- t,a2 = I +X, then U(K)-U1 (K), 

where 

aUI (K) = (al - (l~;) -IKK ~) . (5.3) 

IX. Iff = 2/1 + X, then U (K )=U2 (K) = U 1 (K )2, 

where 

(1 + X)Uz (K) = (0 + X)l = 2KK 
-2K 

2K ) 
I-X' 

(5.4) 

These results can also be obtained for the case of N = 3 from 
the results of Sec. 2. For this purpose, set 

a = 1,2,3,8, 

Ma = K et , a = 4,5,6,7, 
and make contact with the notation of(5.1) by setting 

iA.M = iAaKa = (_OK ~ . (5.5a) 

Then one calculates 

( KK-~l 0 ) 
Na = 0, NA = 0 - !X ' 

X = KK, Y = O. (5.5b) 
Insertion of(5.5) into results IV and III of Sec. 2 reproduces 
the results VIII and IX of this section for N = 3. Similarly 
one relates results of Sec. 4 to the results of this section when 
N=4. 

6. THE COSET SPACE UrN + r)/(UNxUr) 
The required parametrizations are obtained by express­

ing UEUn, n = N + r, as a function of 2Nr real or Nr com­
plex scalar fields, for example the Goldstone fields K of a 
nonlinear realization of Un in which UN X Ur is realized 
linearly. The aim is not to achieve results of the greatest 
generality but rather to discuss parametrizations which are 
either manifestly simple in appearance of else known to un­
derly specially simple versions of the theories in which they 
occur. 

Aiming to build unitary matrices in the form, 

where J, M, and L are respectively N XN, N Xr and rxr 
matrices, a natural guess would be to write M = K and deter­
mine J and L in terms of K in such a way as to achieve 
unitarity. In discussing U (n,r) CT-models7 it was found that, 
while this choice was manageable, a choice, vastly superior 
choice for fields K either in two or four dimensions was 
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achieved, by study of self-duality equations in two 
dimensions. 

Thus, set 

U(K) = (_~Kt 
and impose 

P+KL 2K t =l, 

JK=KL, 

L2+LKtKL=I, 

KL) 
L ' 

(6.1) 

(6.2a) 

(6.2b) 

(6.2c) 

to make U(K) unitary. In general below, we assume r<N 
without providing those minor changes that are required 
when r = N For given r, K t K obeys a Cayley-Hamilton 
equationf(KtK) = 0, wheref(x) is a polynomial in x of 
degree r. It then follows that the Cayley-Hamilton equation 
of KK t is a polynomial of degree r + 1, in general. Likewise 
J and L are polynomials respectively of degree r + 1 inKKt, 
and r in KtK. Further (6.2c) can be written 
L 2(1 + K t K) = 1. 

We illustrate by consideration of the case r = 2. Then 
KtK obeys 

(KtK)2 = SKtK -.1, (6.3) 

where the UN X Ur invariants Sand.1 are given by 

S= TrKtK, 

.1 = detKtK, 

and KK \ in consequence of (6.3), obeys 

(KK t)3 = S (KK? - .1KK t. 

(6.4a) 

(6.4b) 

(6.5) 

It is now easy to solve (6.2), initially for L Z and J 2, obtaining 

L2 =a + bKtK, 

J2 = I - aKKt - b (KKt/, 

where 

(6.6a) 

(6.6b) 

a = (S + 1)/ r, b = - 1/ r, r =.1 + S + 1. (6.6c) 

To make (6.1) an explicit parametrization, we must now ob­
tain Land J from L 2 and J 2. It is easy to complete this 
calculation; as the result is quite complicated, we do not 
display it. A manifestly simple parametrization of U(N 
;t r)/(UN X Ur) can be obtained by considering 
U (K) = U (K) 2, which obviously is unitary if U (K) itself is. 
This yields 

X. 

(6.7) 

belongs to Un, and is given explicitly as a function of K with 
the aid of L 2, given by (6.6a) and (6.6c) alone. 

The parametrization (6.7) is notable because it does not 
involve any square roots. 

In the special case of N = r = 2, (6.7) is replaced by 
XI. 

/'.. 1 
U(K)= -

r 

( 
S + I -.1 - 2KK t 

X _ 2(S + I)Kt + 2KtKKt 
2(S + I)K - 2KKtK) 
S + I -.1 - 2K tK . 

(6.8) 
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This result also arises naturally from results for U4 ma­
trices. To see this, introduce a set ofSU4A matrices in obvi­
ous generalization of the Gell-Mann A-matrices ofSU3. 
Specialize the SU4 adjoint vector M; by setting 

Ma =0, Ma =Ka, 

where a labels the values 1,2,3,8,13,14,15, corresponding to 
the generators of S(U2 X U2), of i, and a labels the rest. To 
connect Ka to the matrix K of Goldstone fields set 

iM.A = ( 0 t 
-K 

Then we calculate 

~. 
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(6.9a) 

(6.9b) 

Pa =0, 
(6.9c) 

iP.A + !SiM.A = ( ~ t 
-K KK 

KKotK) . (6.9d) 

Now insertion of the four results (6.9) into (4.4) reproduces 
(6.8). The U4 parametrization that reduces to U(K) using 
(6.9) has not been found. 
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Field fluctuations in a two-phase random medium 
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We consider here the problem of determining the mean square fluctuations in a statistically 
homogeneous isotropic two-phase dielectric random medium. An expression is derived for a 
weighted sum of the mean square fluctuations in each phase in terms of the effective dielectric 
constant. From this expression bounds are derived for the mean square fluctuations in each phase. 
An assumption is then made to allow us to obtain exact expressions for the mean square 
fluctuations in a particular phase. 

1. INTRODUCTION 

In a dielectric medium the electric and displacement 
fields (E and D respectively) are governed by the equations 

V'eE =0, 

VXE=O, 

D=€E, 

(1) 

(2) 

(3) 

where € is considered to be a random function of position. 
(The same equations govern heat conductivity, electrical 
conductivity, etc.) 

The effective dielectric constant €*, for an infinite ho­
mogeneous isotropic random medium is defined by the 
relation 

(D) = €*(E) , (4) 

where the brackets ( ), denote an ensemble average, (D) 
and (E) are constant vectors. (We note that €* may also be 
defined by (D·E) = €*(E)·(E). It may be shown l that 
(D·E) = (D)·(E) for an infinite homogeneous isotropic 
random medium.) The theory of effective constants has been 
investigated by many authors 1-6 in great detail. 

Here we wish to determine information about the mean 
square field fluctuations in terms of €*. For a general medi­
um, the variance of the E field is defined as 

cr. _ «E - (E) )·(E - (E») 
E - (EHE) , (5) 

with a similar expression for cro. 
A two-phase medium is characterized by the phase di­

electric constants €I and €2 and volume fractions VI and V2 

(v t + V2 = 1). We choose here €t > €2' The geometry of the 
medium may be characterized by a probability density func­
tional or the n moments (€(Xt)"'€(xn » for all n. We define 
here mean square field fluctuations in a particular phase (i) 
as 

cr. _ «E; - (E;) )'(E; - (E;) » 
E, - (E).(E) (6) 

(no summation on I). 

The (EHE) normalization in the denominator may be 
replaced by (Ej )·(E;) when desired, since as we point out 

a'Permanent address: School of Engineering, Tel Aviv University, Tel­
Aviv, Israel. 

below (E;) and (E) are simply related. Laterin the paper we 
shall consider the alternative normalization. There is a simi­
lar definition for cro

i
• 

In Sec. 2 we shall derive the equation 

(7) 

and a similar one for the D field. 
In Sec. 3 we shall find bounds for ~, and cro

i 
and pre­

sent an assumption which allows us to obtain ~, or cro, ex­
actly. The importance of the quantities E*/(€) and 
E*( (lIE» will be emphasized. 

2. DERIVATION OF EO. (7) 

In a previous paper,7 we derived the equation 

«E) - E*)(EHE) = (E(E - (E»)-(E - (E») , (8) 

and a similar one for D with E replaced by a = liE. In that 
paper, Eq. (8) was used to obtain bounds for ~ and cro. 
Mendelsohn8 also has recently treated the problem of 
bounds. 

We shall now derive Eq. (7) from Eq. (8). For a two­
phase material 

(€(E - (E»·(E - (E») = Etvt«E t - (E»·(Et - (E» 

(9) 
+ E2V2«E2 - (E) )'(E2 - (E») . 

Noting that (E) = Vt (E t ) + v2 (E2 ), we find from Eqs. 
(8) and (9) after some algebra 

The term (E t ) - (E2 ) may be simplified by noting the 
relations 

(11) 
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(0) =E*(E) =vl(O]) +V2(02) 

= VIE] (E) + V2E2(E2) . 

From Eqs. (11) and (12) we find 

(E]) = (E* - E2) (E), 
V](E] - E2) 

(E
2

) = (EI - E*) (E), 
V2(E I - E2) 

(12) 

(l3a) 

(l3b) 

(E I ) - (E2 ) = 1 (E* - (E»(E). (13c) 
VIViE I - E2) 

Substituting Eq. (l3c) into Eq. (10) yields Eq. (7) after 
further simplification. 

An analogous procedure for the D field yields 

VIal tr. 
(a) D, 

where 

a;=I/E; , 

a*=1/E* . 

When V;E I>VjE2 (i = 1,2;j = 1,2), Eqs. (7) and (14) be­
come respectively: 

ail + V2E2 ai, = ---.!1- (1 - ~)( V2E* - 1 ), (15) 
VIE2 VIV2EI VIE I E2 

~alat.+at,= _a_I_(I_ ~)(vla* -1).(16) 
V2 a 2 vlv2a 2 V2a2 a l 

3. BOUNDS AND EXACT EXPRESSIONS FOR 
ai-,. ~" ai, AND i'?a, 
3.1 Bounds 

In Eq. (7) both terms on the left-hand side are positive. 
Thus, each term is less than the right-hand side and we find 
the upper bounds 

ai.< VI2V2~:;E~ E2)2 (1 - t:) )(E*( : ) -1), (17) 

oi < EI(E) (1 - ~)(E*/ ~) -1). (18) 
, VIV~(EI - E2)2 (E) \ E 

Similarly for the D field we have 

at. < v~ V2~~;~ a
2
? (1 - ~*) )(a*( ~ ) - 1) , (19) 

TABLE I. Upper bounds for a;,., and cTv , for HS limits of ~* (v,~.>Vj~2)' 

cr,)1 <; 

2584 

v~ 
~, 2V2 

~2 (1 + 2V,)2 
2v, 

2V2 
(3 - V,)2 
~ 2v, 
~2 (3 - v.), 

-':l 
2vi 
~2 _1_ 

~. 2v, 
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TABLE II. Upper bounds for.r.,. and at, for HS limits of ~* (v,~. >Vj~2) . 

.rD , .;; 

2 (~,) 
9v2 ~2 

2v. 

~_V_2 _~ 
9 (I +2v,) ~2 

2v. 

!2 
2 

2v. ~, 

9(3 - V,)2 ~2 

!2 
2 

~~ 
9 ~2 

at, < 2
al

(a) 2(1-~)(a*(~)-I). 
vlv2(a l -a2) (a) a 

(20) 

We are most interested in these bounds for E I >E2. Using 
again the condition V;EI>VjE2' which means that we are not 
considering extremes in either volume fraction, we find 

(21) 

(22) 

(23) 

(24) 

The bounds are dependent upon where E* lies with re­
spect to Eland E2• Hashin and Shtrikman3 have shown that 

1 + VI 
1/(/3 - 1) + (1 - v l )/3 

< E* </3 + (1 - v I), (25) 
E2 1/(1 - /3) + v1/3/3 

where/3 = E I /E2. 

For V;EI>VjE2' Eq. (25) reduces to 

.0*= (1 +2VI)E2 /E*';: 2vI E =.0* (26) 
"'L- '" '" I-"'U' (1 - VI) (3 - VI) 

In Table I we show how the upper bound for ai, and at, 
depends on El and Et. Roughly speaking, we note that the 
lower bound, El, corresponds to a geometry in which phase 
(1) materials are inclusions in the matrix of phase (2). The 
upper bound, Et, corresponds to a geometry where phase (2) 
materials are inclusions in the matrix of phase (1). 

As we stated above, it is also useful to consider the 
quantity 

tT. _ «E; - (E)·(E; - (E;») 
E, - (E).(E) , 

(27) 

with a similar definition for at,. Here the phase fluctuations 
are normalized with respect to the mean field in the particu­
lar phase. The results for V;EI>VjE2 are given in Table II. 

The bounds in Tables I and II are correct, but the ques­
tion arises as to whether or not the bounds are restrictive. 
For example, in Table II we see that four of the bounds de­
pend upon Ell E2. If the bounds are indeed suitably restrictive 
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(i.e., "good" bounds), we may expect materials for which 
~,(E* = EV may be quite large. 

The bounds that do not depend upon Ell E2 seem reason­
ably restrictive from a physical point of view since we would 
expect fluctuations in a particular phase to be of the order of 
magnitude of the mean field in the phase. It is true that for 
isolated spherical inclusions, or for the composite spheres 
Hashin and Shtrikman used to prove the realizability of their 
bounds, there are no fluctuations in the sphere itself. This 
occurs, however, only because of the special nature of the 
sphere and in general, fluctuations occur in inclusions. 

Without further calculations, numerical solutions or 
experimental evidence, we cannot at this point answer the 
question of whether or not materials exist for which, say, ~, 
-0 (E I/E2) when E* = E!. We would expect, however, that 
for a large class of materials this is not so and that~, and 

~, (or 01, and 01.> should be ofthe same order ofmagni­
tude. We might expect this to be so, for example, if the geom­
etry of the inclusions was not vastly different from the ma­
trix geometry. In the next section, we shall show the 
consequences of making the a priori assumption that~, and 

~, are both of the same order of magnitude. 

3.2 Exact expressions for ~" 01,1 ~,I and ~, 

In this section, we make the assumption that ~. and 
~, are of the same order in EI/E2 ifv2 = O(VI)' [This implies 

that 01. and 01, are also of the same order. We interpret the 
condition v2 = 0 (VI) here to be.2:$ Vj :$ .8.] We assume that 
this is true over the whole range of E*. That is, we assume 
that this is true if phase (I) may be considered to be an inclu­
sion phase in the matrix phase (2) (E* ZE!) or vice-versa 
(E*ZE!r). 

If we assume that~, and~, are the same order of 
magnitude, then the relative magnitude of the terms 

al., and V2E2~, 
VIE I 

in Eq. (15) depends strongly on the value of E*. It may be 
shown that if E* = 0 (En then 

V2E2 tT. tT. £,> E, 
VIE I 

and if E* = 0 (E!r ) 

tT. ..... V2E2 tT. . 
E I ' E;:. 

VIE I 

TABLE III. Exact expressions for ai, and .rD, (V,E,>V
J

E2), 

E· = o (En E:. = O(E~) 

a;:, E· ( E.) -1--

+ ( V2E· _I ) 
VIE, VIE! 

cri-;, 
V2 £2 

ai. ~(~-I ) 
v~ E* 

ab, ~E2 (1_ ~) 
V2 E· V2E· 
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(28) 

(29) 

TABLE IV. Exact expressions for 0:;;, and U'D, (V,E,>V
J

E2). 

u; 
E, 

0:;, 

u; 
0, 

01. 

E· = O(EV E· = o (E'lj) 

~(1-~) 
E* VIEj 

( v::. -1) 
( V;:' -1) 

V2E· (I _ E2.) 
E2 V2E 

If then E* = 0 (E!) we find from Eq. (15) 

tT. = ~ ( V2E* - 1 ) 
E2 2 ' 

V2 E2 

while if E* = 0 (E!r) 

~ = ~(1- ~). 
• VIE I VIE I 

(30) 

(31) 

That is, in these limits we can obtain exact expressions 
for~, or~,. Similar expressions can be obtained for uti or 

ut,. If on the other hand E* = 0 (11 EtE2), both terms are of 
the same order of magnitude and no exact expressions can be 
obtained. In Tables III and IV, we present exact expressions 
for the variances. 

It is interesting to note that we only obtain exact expres­
sions when c? and if1 are of the same order of magnitude. 
That is, for that phase in which the mean phase field is of the 
same order of magnitUde as the mean field. 

In closing this section, we want to emphasize again that 
the results in Tables III and IV are exact results only if the 
assumptions ~ = 0 (cr.E ) and 01 = 0 (U;D ) are correct. 

I 2 t 1 

The validity of this assumption has yet to be firmly estab-
lished for any class of materials. 

4. CONCLUSIONS 

In Eqs. (17)-(24), we present bounds for the quantities 
~, and ut .. Using Eqs. (13a)-(13c) and similar expressions 
for (D t ) and (D2 ) are similar bounds can be obtained for~i 

and 61 .. 
When E* = E! (the lower HS bound) or E* = E!r (the 

upper HS bound), bounds for c? and i? are given in Tables I 
and II when Vj Et >Vj E2. 

If~, = 0 (~) exact expressions for c? and if1 are giv­
en in Tables III and IV when E* = 0 (EV or E* = (E!r) for 
Vj Et >Vj E2· The range of validity of this assumption has not 
yet been firmly established. 
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Localized nonuniform patterns in a diffusion-reaction model with 
autocatalysis and the Langmuir-Hinshelwood saturation law 
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Departamento de Fisica de Fluidos. Universidad Autonoma de Madrid. Cantoblanco (Madrid) Spain 

(Received 17 July 1979; accepted for publication 26 October 1979) 

The WKB (Wentzel-Kramers-Brillouin) method is used to predict the onset of localized dissipa­
tive structures in a one-dimensional reactor where a diffusion-reaction process with autocatalysis 
and the Langmuir-Hinshelwood (Michaelis-Menten, Holling) saturation law takes place. 

1. INTRODUCTION 

In reactor kinetics one usually deals with diffusion-re­
action processes which involve autocatalytic pathways 
and/or steps obeying saturation laws, like the Langmuir­
Hinshelwood law (see Ref. 1 for a comprehensive and recent 
monograph). The latter law also corresponds to the Michae­
lis-Menten kinetics in enzyme-controlled biochemical reac­
tions, and to the Holling law in some population dispersion 
and competition problems in ecology. In a previous paper 
(hereafter called I) the present authors have considered the 
onset of nonuniform distribution of reactants in a one-di­
mensional vessel. They restricted consideration, however, to 
the case where the structure spreads over the whole contain­
er. In the present note we extend the analysis to the case of 
dissipative structures appearing only as patches in certain 
parts of the reactor.3 The model problem considered in I 
contains three relevant reactants A, X, and Y whose spatio­
temporal evolution is governed by the following set of partial 
differential equations: 

aA ~A - = -A +DA -, (Ua) 
at ail 

ax =XY-X(1 +qX)-I+(W a
z
:, (Ub) 

at ar 
ay =A-XY+D~Y, (Uc) 
at ail 

that for a one-dimensional geometry (O<r< 1) we have writ­
ten in dimensionless form. D refers to the diffusion of Y, 
D = Dy. (J is the ratio of the diffusion coefficient of XtoD y. 
(JD y = Dx. DAis the diffusion coefficient ofA. We shall take 
D A > D, Dx and, thus, and adiabatic elimination of A will be 
made. Using Dirichlet's boundary conditions (b. c.) 

A (r = O,t) = A (r = l,t) = A, (1.2) 

whereAis some given constant, Eq. (1.1a) has the following 
nonuniform steady solution 

A (r) = A sech(2D y2) - I cosh(r -;;)D A- 112. (1.3) 

For simplicity we choose the following b.c. for (l.1b) and 
(l.lc) 

X(O,t)=X(I,t)=A/(l-qA) 

Y(O,t) = Y(I,t) = 1 - qA. 

(l.4a) 

(l.4b) 

This choice elimitates the appearance of diffusional bound­
ary layers at both extremes of the reactor line. Thus, for low 

enough values of D, the system (1.1) possesses the following 
steady solution 

Xs(r) =A (r)/[1 - qA (r») -I + !qA "(r) 
- [(JA (r)/[ 1 - qA (r»))'jD /(1 - qA (r») 

+ o (D 2
), (l.Sa) 

Ys(r) = I - qA (r) - [2q[1 - qA (r)14 #(r)/A (r) 
- (J [A (r)/[I - qA (r)]J'ID + 0 (D 2). (Ub) 

Here and later on a prime (, ) over a quantity merely denotes 
differentiation with respect to the spatial variable, r. 

2. STABILITY OF THE PRIMARY NONUNIFORM STEADY 
DISTRIBUTION OF REACTANTS 

To test the stability of (1.5) we consider disturbances x 
and y upon Xs and Ys ' To the first approximation we have 

(:t - L (r,r»)u = 0, 

where 

u = (x,y), 

L (r,r) 

a2 

=(Ys - [1 +qXs(r)]-Z + (JD ail 

- Y,(r) 

Here the b.c. are 

(2.1) 

(2.2a) 

x(O,t) = x(l,t) = y(O,t) = y(l,t) = O. (2.2c) 

Posing 

u(r,t) = eat E' (r), (2.3) 

with E' =( S (r), 17(r», Eq. (2.1) leads to the following eigen­
value problem 

[L (r,r) - ol]E(r) = 0, (2.4) 

with the b.c. (2.2c). It should be noted that the coefficients in 
Eq. (2.4) depend onA (r) which ares/ow varying quantities in 
the/ast varying spatial scale where X and Y change. Thus the 
WKB method' can be used to solve (2.4). We pose 

g(r)~ejOJ(r;DI/2)/DI/2F(r,D lIZ), (2.5a) 

where wand F are slow varying functions over the scale 
D 1/2. For a self-consistent approach we shall assume that 

2586 J. Math. Phys. 21(10). October 1980 0022-2488/80/102586-04$1.00 © 1980 American Institute of PhySics 2586 



                                                                                                                                    

and 

w(r,D 112) = w(r) (2.5b) 

F (r,D 1/2) = Fo (r) + D 112 FI (r) + DF2 (r) + 0 (D 312). 
(2.5c) 

Insertion of (2.5) into (2.4) yields the following hierarchy of 
equations: 

HFo =0, (2.6a) 

(
iO(W" fo +2W'fb») 

H~ = , 
i(w"go + 2w'gb) 

(2.6b) 

where Fo = (fo, go), and 

( 
u + OW'2 - qA (1 - qA ) 

H= 
l-qA 

-A/(I-qA) ) 

u+A/(I-qA)+w,2 . 
(2.7) 

A necessary and sufficient condition for the existence of 
a nontrivial solution to (2.6a) is that (2.7) be singular. The 
vanishing of the determinant of (2. 7) leads to a second-order 
equation in W,2 whose solution is 

20W'2 = - [0 (u + 1 ~ qA ) + u - qA (1 - qA ) ] 

± {[ 0 ( u + I ~ qA ) + u - qA (1 - qA ) r 
-40 [u(u+ _A_ -qA(I-qA») 

I -qA 

+A(I- qA)Jf
12

· (2.8) 

On the other hand, if we choose an appropriate con­
stant, e, the following relation holds: 

(1 - qA )e + u + Ow' 2 - qA (1 - qA ) = 0 . (2.9) 

We also have 

(1 - qA )fo + (u + W,2 + _A_) go = 0 (2. lOa) 
l-qA 

and 

w"(O fo + ego) + 2w'(0 fo + ego)' = O. (2. lOb) 

The latter equation (2.1 Ob) yields 

(0 fo + cgo)W'1I2 = const. (2.11a) 

Introducing (2. I la) into (2. lOa) we get 

go = const w' - 1/2/{ e - 0 [(u + W'2)(1 - qA ) + A ] 

/(1 - qA )2] . (2. 11 b) 

Thus, up to some constants which depend on the b.c. of the 
problem, bothlo andgo are determined. However, for given 
b.c. not all values of u will allow a nontrivial solution. Rather 
u is the eigenvalue of the problem to be solved. 

Notice that the WKB method is valid provided the fol­
lowing relation does not hold 

e = 0 [(u + w'2)(1 - qA) +A ](1 - qA) -2. (2.12) 

Otherwisefo and go will be ill-defined and the asymptotic 
representation (2.5) will not be acceptable. 

The values of r at which (2.12) holds are the turning 
points in the WKB method. Using (2.9) these turning points 
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are the solutions of the equation 

20w' 2 + 0 [u + A /(1 - qA )] + u - qA (1 - qA ) = O. 
(2.13) 

Thus the turning points make zero the discriminant in 
(2.8). We have 

[ 0 ( u + 1 ~ qA ) + u - qA (1 - qA ) r 
= 40 [ u( u + 1 ~ qA - qA (1 - qA ») + A (1 - qA ) ], 

(2.14) 

which for u = 0 (strictly speaking for Reu = 0), yields the 
turning points located on the marginal stability curve for the 
onset of non-uniform spatial patterns. s 

3. LOCALIZED STRUCTURES ALONG THE LINE 
REACTOR 

For u = 0, the solutions to (2.14) are the roots of the 
polynomial 

Z ( ) 
4 40A - 2 3 1 - 100A 2 

q =q + A q + A2 q 

100 00A-4 
+7 q + AJ' (3.1) 

and are the turning points belonging to the marginal curve 
(2.14) at vanishing u. Note that with our assumptions2 we 
have 0 < 0 < 1, and q> O. We shall denote by qc a value on 
this marginal curve (also denoted the curve of neutral stabil­
ity). The discriminant of (2.7) is equal to Z (q)/(1 - qA )2, 
and has same sign as z(q). 

According to the Harriot-Descartes theorem, in the 
segment 0 < OA < 4 the equationz(q) = 0 possesses one nega­
tive real solution and either one or three positive real ones. In 
the following to fix ideas, we shall restrict consideration to 
the numerical values A = I,DA = 1O-2,andD= 5XlO- 4 , 

for which the minimum of A (r) in O<r< 1 is 

A = 0.013. (3.2) 

For the given set of data we have three positive real solutions. 
The negative one shall be disregarded as it corresponds to 
negative values of kinetic constants. Then, at fixed 0 the fol­
lowing results hold: 

(i) Z (q) has three real positive roots in the interval6 

(3.3) 

and a single real positive root and two complex conjugate 
ones in the remaining 

A. <A.;;X; (3.4) 

(ii) Denoting by ql> q2' q3 the solutions ofZ (q) = 0 such 
that for A belonging to (3.3.) 

0<ql(A)<q2(A)<q3(A), (3.5) 

then the only positive root in (3.4) in q3; 

(iii) q2 (A) and q3 (A) are decreasing functions in their 
definition domain whereas ql (a) is decreasing in 

~<A <A + , (3.6) 

and increasing in 
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TABLE I. Roots of (3.1) and related numerical values corresponding to the various cases of localized dissipative structures depicted in Fig. 1. 

B A+ A. q,(A) q, (A +) q, (A,J = q2(A.,) q,(A,J q,(~) q2(~) q3(~) 

0.1 0.983 0.909 0.664 
0.2 0.492 0.530 0.833 1.328 1.408 
0.3 0.328 0.353 0.768 1.991 2.113 
0.4 0.246 0.265 0.712 2.655 2.815 
0.5 0.197 0.212 0.663 3.319 3.519 
0.6 0.164 0.176 0.619 3.983 4.237 
0.7 0.140 0.151 0.579 4.647 4.939 
0.8 0.123 0.132 0.543 5.311 5.649 
0.9 0.109 0.117 0.510 5.974 6.371 

A + <A<.A", ' (3.7) 

which defines A + ; 
(iv) In the vicinity of both q. and q3 the polynomial 

Z (q) is an increasing function of q, whereas in the neighbor­
hood of q2 it is a decreasing function of q; 

(v) For any real value of q, in the limit () = 0, we have 
Z (q»O. Then Z (q) has two double real roots, one at q = 0 
and the other at q = A - •. For () going to infinity z(q) has no 
real root. 

Thus, using these properties and the numerical esti­
mates given in Table I the following cases appear: 

Case I: When qc is such that either 

q2(-i) <qc <q3(~)' (3.8a) 

or 

(3.8b) 

the only positive real root ofz(q) which can be set equal toqc 
is q3' Then we have two values of r, r., and r2 such that 

(3.9) 

In the region r. < r < r2 we have qc < q3 (A) and Z (qc) is 
negative. Thus W,2(q = q c) is complex and the exponential in 
Eq. (2.5a) oscillates in that region of the reactor. Thus, we 
have bifurcation to a secondary solution. However, for r be­
longing to the set (O,r.) u (r2' 1) we have qc >q3 (A) and z(q) 
is positive. Then as W'2(q = qc) is negative and the exponen-

y y 

( 0) ( b) 

5.454 76.823 76.824 
1.706 7.666 76.722 76.724 
2.562 9.347 76.620 76.624 
3.412 10.754 76.517 76.525 
4.265 11.988 76.416 76.426 
5.139 13.100 76.314 76.328 
5.989 14.118 76.213 76.229 
6.852 15.064 76.112 76.131 
7.733 15.951 76.011 76.033 

Hal in Eq. (2.5a) does not oscillate in that region of the reac­
tor, the only solution to (2.4) which satisfies the b.c. is the 
primary one (1.5). Thus we have a localized dissipative struc­

ture as depicted in Fig. 1.(a). 
Case II: When 

q.(A+)<qc<q.(A",), (3.10) 

the only positive real roots of z(q) are q 1 and q 3' Then there 
exist two values of A, : A, and ~A; : A < ~A; such that 

q.CA)=qc' i=1,2, (3. 11 a) 

and a third value 3A; :A < lA < 3A; such that 

q3CA) = qc' (3.llb) 

as shown in Table I. q. (A) is a decreasing function of A in a 
vicinity of : A whereas it is increasing in a neighborhood of 
iA. Using the notation 

fA = A (r = ir.) = A (r = ir2 = 1 - ir.), i = 1,2, 

and 

3A =A (r= 3r.) =A Cr2 = 1- 3r.), 

which yields 

·r. <2r. <3r• <3r2 <2r2 < ·r2, 

a similar argument to that used in the preceding case pro­
duces the solution illustrated in Fig. 1.(c). We have a dissipa­
tive structure in three patches. 

y 

(c) 

FIG. I. Various possible diSSipative structures in a one-dimensional reactor (O<;;r<;; I): (a) A localized single spatial pattern somewhere in the center of the 
vessel. (b) Three localized structures. (c) Alternative location for three structures. For illustration we have given only the expected distribution of one of the 

reactants. 
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Case III: When 

ql (A.) <qc <ql (~), (3.12) 

there are values of A for which any of the three roots q .. (A ), 
i = 1,2,3 can be set equal to qc' Let these values of A be "A, 
i = 1,2,3. Each value A will appear in two points of the 
reactor i'l and i'2 = 1 - i'l symmetric with respect to the 
middle point, , = l' As the three roots qi(A), i = 1,2,3, are 
decreasing functions in the region (3.12) with A belonging to 
(~, A.) we have 

(3.13) 

A discussion similar to that given for case I yields again the 
distribution depicted in Fig. l.(c). Note that for the value 
() = 0.1 noA. can be defined andZ (q) has three positive real 
roots in the whole domain (A,A'), However, the distribution 
of Fig. l.(c) corresponds to e = 0.1 provided ql (A + ) <qc 
<ql (~). 

Case IV: When 

(3.14) 

only q2 and q3 can be set equal to qc. Thus 1'1 = 0,1'2 = 1, 
in Fig. l.(c), and the actual distribution of reactants corre­
sponds to the picture given in Fig. l.(b). Note thatthe order­
ing (a), (b), (c) in Fig. 1 corresponds to the qc decreasing 
from q3(A) to ql (A +). 

Case V: When 

(3.15) 

for all values of A we have: Z (qJ < Z{ q3 (A )} = O. Then the 
exponential in (2.5a) oscillates in all points in the reactor 
vessel. We obtain bifurcation to a global dissipative structure 
which looks like those described in paper I. 

Lastly, the case 

(3.16) 

has not been considered because for all values of A we have 
Z(qc»Z{q3(A)} = O. Then the exponential in (2.5a) does 
not oscillate at any point in the reactor vessel. The only solu-
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(2.4) satisfying the b.c. (1.4) is the trivial one. Thus, values of 
q above q3 (~) cannot belong to the neutral stability curve 
(2.14). 

4. CONCLUSION 

In the model problem here discussed we have found 
either none, one, or three spatially structured patches for a 
reactive process occurring along a line (one-dimensional) re­
actor, e.g., along a catalytic wire. The number of such pecu­
liar patches, which indeed affects the efficiency of the reac­
tion-diffusion process, depends on the number of positive 
real roots of the polynomial (3.1). On the other hand, that 
number is the number of turning points found with the WKB 
method. It also appears that the maximum number of patch­
es is essentially related to the reaction kinetics involved in 
the process.7 
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Resonant frequencies of the nonaxial symmetric modes in a micros trip disk are computed using 
two approaches: Galerkin's method and a perturbative approach. The perturbative approach is 
good when the substrate of the microstrip disk is thin compared to its radius and when the 
dielectric constant of the substrate is high. Galerkin's method can be used to compute the 
resonant frequency to high accuracy but the perturbative approach is more efficient for thin 
substrate and large dielectric constant. In applying Galerkin's method, the problem is first cast 
into a vector dual integral equation using vector Hankel transform (VHT). Using VHT, it is also 
shown that the magnetic-wall model is only good when the substrate is of zero thickness. Using 
zero-order current distribution on the disk, we also derive the radiation field and radiation 
pattern. Also, by taking into account the radiation loss, the resonant frequencies are complex. We 
find discrepancies when we compare our results for the resonant frequency shifts with that 
obtained by quasistatic approach. 

I. INTRODUCTION 

The applications of microstrip disks as antenna ele­
ments l

-4 and resonators5
-
9 have aroused interest in finding a 

way to predict the resonant frequencies of a microstrip disk. 
Watkins I obtained the approximate resonant frequencies for 
a circular microstrip disk by using a magnetic-wall resonator 
model ignoring the fringing field effect. Several authors have 
obtained corrections to Watkins' formula using a quasistatic 
argument. I

,6,S Improvements to the magnetic-wall model 
have also been obtained using qualitative arguments.3,7 

However, at resonance, the disk size is of the order of the 
wavelength concerned and the. validity of such arguments is 
doubtful. Itoh9 performed a full-wave analysis to find the 
resonant frequencies of a rectangular micros trip disk. The 
disk was enclosed in a waveguide so that the resonant fre­
quencies are real. 

transform called the vector Hankel transform (see Appen­
dix). By doing so, the nonaxial symmetric mode problem can 
be cast into a vector dual integral equation which can be 
solved by vector basis function expansion method. We also 
derive a perturbation formula for the resonant frequencies of 
the disk resonator and expressions for its radiation fields. 

Recently, Chew and Kong lO studied the resonant fre­
quencies of the axial-symmetric mode in a circular micros­
trip disk resonator using dual integral equation formalism 
and a perturbative approach. The rigorous approaches em­
ployed in Refs. 9 and 10 show discrepancies with the quasi­
static approach. The dual integral equation formalism to 
mixed boundary value problems has been of historic inter­
est. 11-13 The basis function expansion method to the solution 
of mixed boundary value problem was first employed by 
Tranter l2 and subsequently used by Itoh and Mittra,14 Bor­
kar and Yang,8 and Chew and Kong 10, 15 to the microstrip 
problem. 

The problem of the nonaxial symmetric mode reso­
nance in a circular microstrip disk has been formulated,1O 
but has not been solved. It is shown that solution to such a 
problem becomes tractable if we devise a new kind of Hankel 

"This work is supported by Schlumberger-Doll Research Center and the 
Joint Services Electronics Program under Contract DAAG-29-78-C-
0020. 

II. INTEGRAL EQUATIONS FOR THE NONAXIAL 
SYMMETRIC MODES 

The problem of finding the natural modes of a circular 
microstrip disk as shown in Fig. I has been formulated in 
terms of a set of integral equations. 10 In the formulation, a 
general form in terms of Hankel transform is written for the 
Ez and Hz components of the TM and TE waves, respective­
ly. The tangential components ofTM and TE fields can thus 

z 

p 

FIG. I. Geometrical configuration. 
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be obtained. )6 The mixed boundary condition imposed on 
the tangential field components at the plane that contains 
the disk results in 

E (p) = Ep(p) = (00 e~(kp)ikz(1 _ R TM) 

p cosn¢ Jo 

X J ~(kp p) dkp + i(J)J.L 1"0 h ~(kp)(l + R TE) 

X-n-Jn(kpp)dkp =0, p<a, (1) 
kpp 

E",(p) = _ E~(~ = (00 e~(kp)ikz(1 _ R TM) 
smn'f' Jo 

x_n_ I n (kp p) dkp + i(J)J.L (00 h ~ (kp)(1 + R TE) 

kp P Jo 
XJ~(kpp)dkp=O, p<a, (2) 

K",(p) = ~",(p) = 2 (00 h ~(kp)ikz 
smn¢ Jo 

XJ ~ (kp p) dkp + 2i(J)E L" e~ (kp) 

n 
X--Jn(kpp)dkp =0, p>a, 

kpp 

Kp(p) = _ Kp(p) = 2 (00 h~(kp) nikz 

cosn¢ Jo kp p 

X I n (kp p) dkp + 2i(J)E 100 
e~ (kp) 

XJ~(kpp)dkp=O, p>a, 

(3) 

(4) 

where e~ (kp) and h ~ (kp ) are unknowns to be determined. 

TM iElkz cosklzd - Ek lz sinklzd 
R = ,(Sa) 

iElkz cosklzd + Ek lz sinklzd 

TE iJ.L)kz sinklzd + J.Lklz cosklzd 
R = ,(5b) 

iJ.L)kz sinklzd - J.Lklz cosklzd 
,-----

kz = v' (J)2J.LE - k ~, k jz = v' (J)2J.LIEI - k ~, (5c) 

and K",(p) and Kp(p) are surface current components on 
the disk. 

In general, hybrid modes exist unless n = 0, i.e., if the 
mode is axial symmetric. Using vector Hankel transform 
(VHT) (see Appendix), Eqs. (1)-(4) can be written more 
concisely as 

_ [Ep(P)] (00 _ 
E(p) = E",(p) = Jo kp dkp Hn{kp p) 

2591 

ik 
e~(kp)""f-<1 - R TM) 

P 

h S (k ) 
i(J)J.L n P (I + R TE) 

kp 

=0, p<a, 
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(6) 

and 

ik 
2hS{k )_Z 

n p k 
p 

=0, p>a, (7a) 

(7b) 

From the reciprocal relationship ofVHT [see Eqs. (AI) 
and (A2)], the VHT of K(p) is 

. e~(kp) 
2'(J)E-­

kp 

ik 
2hS(k )_Z n p k 

p 

(8) 

As such, Eqs. (6) and (7) can be written as a set of vector dual 
integral equations 

f(p) = 100 
kpdkpHn{kpp).G(kp).K(kp)=O, p<a, 

(9) 

K(p) = 100 
kpdkpHn{kpp).K{kp)=O, p>a, 

where 

is related to the dyadic Green's function in kp -space. 

III. ZEROTH-ORDER THEORY 

(10) 

(11) 

In the limit when d-G, we can show from (11) that 

(12) 

With this approximation for G(kp ), we can show that the 
current distribution predicted by the magnetic-wall model5 

is a solution of(9) and (10). The current distribution derived 
from the magnetic-wall model is given by 

A p<a, 
(13) K(p) = ~Jn(Pnm E...) 

Pnm p a 

o p>a, 
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where J ~ (!3nm) = 0 satisfy the edge condition (7b). The 
VHT of iC( p) can be found easily 

K(kp ) 

Substituting K(kp ) into (9), with approximation (12), 
and kJ =!3nm1a, we arrive at 

iC(p) = 

where J ~ (!3nm) = 0 and I n (anp ) = O. The orthogonality of 
the above mode vectors can be proved easily. In practice, we 
need only to pick the M terms of the first series and the P 
terms of the second series resulting in 

=0, 

where 

and 

[ 

na ( P)] --In a np -
- = a np p a 
fnp ( p) , ( p ) . 

J n a np -
a 

p>a, 

The VHT of iC(p) can be found easily, giving 

where 
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(19a) 

(19b) 

, (15) 

where Wnm = (!3nmla)/~Using identities (AS) and 
(A6), we arrive at 
_ idA [O(P - a)] 
€(p) = - --(!3nm 1a) I n(!3nm) 0 . 

Wnm€J 
(16) 

Hence, Eqs. (9) and (10) are satisfied by (13). We can thus 
conclude that the solution of (9) and (10) is in fact the solu­
tion of the magnetic-wall model when d--+O. 

IV. GALERKIN'S METHOD 

Noting that when d-o, the current distribution on the 
disk approaches that of a magnetic-wall model, we can find a 
complete set of vector basis functions to approximate the 
current distribution. By noting that the currents due to the 
TE and TM modes of a magnetic-wall cavity form a com­
plete set, the current distribution of the nth mode of the 
micros trip disk resonator can be represented as 

(17) 

p>a, 

(21a) 

- kpa J ~ (anp ) [ 0 ] 
Fnp(kp) = k 2 _( 1)2 J (k a) . 

p a np a n p 

(21b) 

Equations (10) and (7a) are automatically satisfied by the 
choice of iC( p) in (18). The choice is also asymptotically good 
when d-o because only one term is needed in the limit when 
d-o. Substituting (20) into (9), we obtain 

m~ 1 am LX> kp dkp Hn (kp p) . G (kp) . Knm (kp) 

(22) 

To find a and b ,we find the inner product of the above m 'J! _ 

with knip) andfndp), i.e., multiplying the above withpk ~ 
(p) andpl~k(p) and integrating from 0 to a for J = 1,2, ... , 
M, k = 1,2, ... , P. Using Parseval's theorem (see Appendix), 
(22) becomes 

m~l am LX> kp dkp K~(kp)' G(kp) . Knm(kp) 
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+ ptl bp LX> kp dkp K~(kp) 

.G(kp)' F,./kp) = 0, J = 1, 2, ... , M, (23a) 

m~1 am 1= kp dkp F~k(kp)' G(kp) . Knm(kp) 

(23b) 

The above is a system M + P linear algebraic equations 
involving M + Punknowns from which we can solve for am 
and bp • Written in matrix form, it is 

A KK 
1M A FK 

II 

A KK 
MI A FK 

MP 

AKF 
II 

where 

=0, 

KK (= -T - -
A ij = Jo kp dkp K ni(kp) . G (kp) . Knj(kp), 

A j;K = A ~F = f" kp dkp F?;;(kp) . G(kp)' Knj(kp), 

A rf = L= kp dkp F?;;(kp)' G(kp)' F,.j(kp). 

For nontrivial solutions of am and bp' we require that 

detlAI = 0, 

(24) 

(24a) 

(24b) 

(24c) 

(25) 

whereAis the matrix in (24). Equation (25) is the eigenequa­
tion for the resonant frequencies of the disk resonator. The 
accuracy of the resonant frequencies found can be improved 
by increasing M and P arbitrarily. 
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V. PERTURBATIVE APPROACH 

We have shown that in the limit when d-D, the reso­
nant frequencies of the disk resonator approach that of a 
magnetic-wall cavity. Therefore, for small d, we can think of 
the disk resonator as a perturbation of the magnetic-wall 
cavity. It was derived in Ref. 10 using a perturbative ap­
proach that the resonant frequency shift of the magnetic­
wall cavity with the magnetic wall removed is given by 

- ifS.ls(E1xHf )· Ii ds 
Aw~ . (26) 

4(WT ) 

In the above, ff; is the electric field in the cavity before per­
turbation, Hf is the magnetic field in the disk resonator after 
the magnetic wall has been removed, ( W T) is the time-aver­
age total energy stored in the cavity before perturbation, and 
AS is the surface of the magnetic wall of the cavity. 

From Ref. 10, taking only the cosine mode for the TM 
wave, E z in the upper half-space above the dielectric sub­
strate for the disk resonator is given by 

Ez = cosn¢ f" kp dkp e~(kp) 

x(1 - R TM)eik,Z In(kp p). (27) 

By matching boundary conditions, E lz in the dielectric sub­
strate is given by 

E lz = - cosn¢ ~ (= kp dkp e~(kp) 
EI Jo 

cosk (z + d) 
X Iz (1 + R TM) I

n 
(k

p 
p). (28) 

cosklzd 

Similarly, with Hz in the upper half-space given by 

Hz = sinn¢ 1= kp dkp h ~(kp) 

X(1 + R TE)eik,Z In(kp p), (29) 

we derive that in the dielectric substrate, 

H lz = sinn¢ 1!:... (= kp dkp h ~(kp) 
ILl Jo 

sink (z + d) 
X .IZ (1 + R TE) I n (kp p). (30) 

smklzd 

We know Ei in (26) from the field in the magnetic-wall 
cavity, 

(31) 

Noting that Ei only has a i-component, we can rewrite (26) 
as 

A ifo~ d f~1rE ~Hf<p I p = aa d¢ dz 
w~ 4(W

T
) , (26a) 

where Hf<P can be derived from (28) and (30)16 giving 

H (
ILn l= h ~(kp)klz cosklz(z + d) 

f<p =cosn¢ --
ILl P 0 kp sinklzd 

x(l +RTE)Jn(kpp)dkp -iWE 100 

e~(kp) 
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X Iz (1 +RTM)J~(k p)dk . cosk (z + d) ) 
cosklzd P P 

(32) 

When d-o, e~(kp) and h ~(kp) can be approximated as 

C (k) Akp (3nm 
en p =r- «(3 1)2 _ k 2 lWE nm a p 

Using the fact that 

(33a) 

(33b) 

(34) 

(WT>=~1Td«(3~m -n2)J~«(3nm)' n>O, (35) 
4wEI 

we obtain 

In the above, we take kz = V W~mIlE - k ~, k lz 
= V(w~m) IlIEI - k;, wherewnm = (3nm laVIl IEI· Fur­
thermore, if we are only interested in the imaginary part of 
the frequency shift, we only need to integrate from 0 to k 

(3 2 ( • 2 nm 'lln 
Im(.:::1wlw)= - 221m (32 

2d«(3 nm - n ) III nm 

i
kJ (k a) 

X n P (l +RTE)dkp 
o kzkp 

+ (k k + [J~(kpa)]2 tanklzd (1 +RTM)dk). 
Jo p [«(3nmla)2 - k;] k lz p 

(37) 

This is because the imaginary frequency shift is due to radi­
ation loss and the fields due to kp from k to infinity do not 
contribute to the radiation fields and the quantity inside the 
large parentheses becomes pure real. 
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VI. RADIATION FIELD 

We can derive the radiation field in the upper half-space 
of the disk resonator from (27) and (29). First, we write (27) 
as a Hankel integral 

E = cosn¢ f 00 k C (k ) 
z 2 _ oc pen p 

x(l - R TM)eik'ZH~I)(kp p) dkp. (38) 

Whenp and z are large, the integrand in (38) is rapidly oscil­
lating. Using the large argument approximation to 
H~I)(kp p), we find a stationary point at kp = k sinO where 
0= tan -I (plz) (Ref. 16, p. 218). Thus, the leading order 
approximation to (38) can be obtained by approximating the 
slowly varying part of the integrand with its value at the 
stationary point, and integrating the rapidly varying part 
exactly. With the approximation toe~ (kp ) given by (33a), we 
have 

A cosn¢k 2 sinO cosO (3nm 

4iwE[«(3nmla)2 - k 2 sin20 ] 

XJn«(3nm)J~(ka sinO)[1 - R TM(O)] 

H~I)(k P sinO) foo kp ik.z 
X -e' 
H~})(kp sinO) - 00 k z 

XHg)(kpp)dkp' p,Z-+oo. (39) 

Noting that the above integral can be evaluated exactly, we 
have 

E (0) _ _ A cosn¢k 2 sinO cosO (3 nm 

z 2wE[«(3nm laf _ k 2 sinO] 

XJn«(3nm) J ~(ka sinO)[ 1 - R TM(O)] 

eikr 

X( - z)" -, r-+oo, (40) 
r 

where r = vz2 + p2. In the above, we have replaced 
H~I)(x)IH~I)(X)_( - on when X-+oo. Since E~O) = - E~O) 

sinO, we obtain E~) as 

A cosw"'k 2 cos20 (3nrn 
E(eO) 'I' J «(3 ) 

2wE[«(3nm la)2-k 2 sin20] n nm 

eikr 
J~(ka sinO)[ 1 - R TM(O)]( - on -. (41) 

r 

Similarly, from (29), we can approximate H ~O) in the far-field 
as 

H(O)- - Anasinn¢ J «(3 ) J 
z 2 f3nm n nm n 

x(kasinO)[1 +RTE(o)](_oneikrlr. (42) 

Since E~) = - V III E H ~0l, we have 

E~O)-V;;; Anasin~¢ I n((3nm) In(ka sinO) 
2(3nm smO 

ikr 

X [1 + RTE(O)]( - on ~. (43) 
r 

We note that the radiation field given in (41) and (43) is 
exactly that derived in Ref. 17 under a different context. 
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VII. A NOTE ON NUMERICAL COMPUTATION 

In evaluating (24a) for (25), we encounter an integral 
which has a pole near the real axis. The proximity ofthis pole 

to the path of integration makes the evaluation of the inte­
gral difficult. Letting G™(kp) = kz (1- R TM), and noting 
that G™( - kp) = G™(kp), we can rewrite the particular 
integral as 

J.. =Pn;Pni J (P .)J (P ·)(i'" dk k [~TM(k)_ H(kg) ] 
I) '\ __ n nI n n) p p p k 2 _ k 2 

L(l.J€ 0 p g 

where 

X [J~(kpa)Y{ [k~ - (P;; y] [k~ - r;iy]) -I +H(kg) L'" dkp kp 

X [J~(kpa)Y{ [k~ - k;l[k; - (P;; YJ [k; - r;i Y]) _I), (44) 

(44a) 

and ± kg are the locations of the poles. By so doing, the first singularity is removed from the integrand and the integral can be 
integrated efficiently using Gaussian quadrature. The second integral can be integrated exactly using contour integration l8

, 

giving 

l'" dkp kp [J~(kpa)]2{ [k~ - k; ][k~ - (P;; YJ [k; - r;j Y]) -I 
= 1TiJ~(kga)H~I)'(kga){2[k; - (P;; Yl [k; - ~;j Yl} -I - D;j 

xa2[(;J2 -1] {2P~;[(p;;r -k;]}-I +n{2[kgPn;:njrrl (45) 

Also, in evaluating the integrals in (24), there are branch points at kp = wV/iE and kp = wv1i;€\. Since w can be 
complex, these branch points can be below the real axis. Thus the path of integration in (24) has to be deformed sufficiently 
below the real axis to avoid the branch points. To search for the zeros of (25), Muller's method was used. 

The subtraction of singularity method can also be applied to (36) for the efficient evaluation of the integral. 

VIII. RESULTS AND DISCUSSIONS 

Since the n = 1 mode of the circular microstrip disk has 
been used widely in microstrip antenna applications, we 
shall study its resonant frequency closely here. 

In Fig. 2, we show the resonant wave number shift vs 
d la using Galerkin's method discussed in Sec. IV. The or­
dered pair of numbers assigned to each curve represent the 
numbers for M and P, respectively, used in (18). We note 
that the imaginary part of the resonant frequency shift con­
verges rapidly as we increase (M, P) from (1, 0) to (2, 2). The 
real part of the resonant frequency shift converges less slow­
ly. This is because the real resonant frequency shift is due to 
the reactive power leakage to the near field. Since the near 
field is singular, good approximation to it can only be ob­
tained with many basis functions. We also note that the 
curves due to various choices of(M, P) do not deviate from 
each other drastically due to the stationary characteristic of 
Galerkin's method. We note that Galerkin's method con­
verges for (M, P) = (2, 2). 

In Fig. 3, we compare Galerkin's method with the per­
turbative approach, and the quasistatic approach. In the 
quasistatic approach, the disk resonator is thought of as an 
LC circuit resonator. The shift in resonant frequency is due 
to the fringing field in C. I

.
6

•
8 Thus, the change in resonant 

frequency is given by 
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Im( .. o/c
l
) 

1.84-k---------_t_ 0.0 

1.8 -0.01 

-0.02 1111 = 1.84118 

"I = 2.65" 
-0.03 

1'1 = I' 
1.7 

-0.04 

1.6 
-0.05 

(1,1) '0.06 

1.5 -0.07 

-0.08 

1.4 -0.09 

-0.1 

0.0 0.1 0.2 0.3 

d/o 

FIG. 2. Plot showing computed resonant frequency shifts of the lowest 
N = 1 mode for different values of (M,P) in Galerkin's method. 
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N=I 

PA 
1.5 

1.4 

0.0 0.1 0.2 

dlo 

-0.07 

-0.08 

-0.09 

0.3 

Pit = 1.84118 
'1 = 2.65. 
~I = ~ 
Re (OIo/c l ) ----

Im(wo/cl ) -

FIG. 3. The comparison of Galerkin's method (GM), perturbative ap­
proach (PA), and the quasi static approach (QA) for the resonant frequency 
shift when E, = 2.65E. 

(46) 

where Co is the capacitance without fringing field effect. 
We note that when d /a < 0.1, the agreement of the per­

turbative approach with Galerkin's method is excellent, 

N = I 

1.84+----------+ 0.0 

1.8 -0.01 

-0.02 

1.7 
-0.03 PII = 1.84118 

'1 = • 
-0.04 

~I = ~ 

1.6 -0.05 
Re (OIO/C I ) 

Im(OIo/CI) -

-0.06 

1.5 -0.07 

-0.08 

1.4 -0.09 

-0.1 

0.0 0.1 0.2 0.3 

dlo 

FIG. 4. The comparison of Galerkin's method (GM). perturbative ap­
proach (P A). and the quasistantic approach (QA) for the resonant frequen­
cy shift when E, = E. 
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0.06 

IE~I at ~ = 90° 

I E81 at ~ = 0 

FIG. 5. Radiation pattern of the lowest N = I mode. 

while there exist substantial discrepancies with the quasita­
tic approach. Thus, for small d / a, the perturbative approach 
reigns superior since it does not involve numerical search of 
zeros as in Galerkin's method. 

In Fig. 4, we show the resonant frequency shift for 
c tic = 1.0. In this case, we find an increase in frequency 
shift. Also, the perturbative approach starts to deviate from 
Galerkin's method for d la > 0.05. This is because the fring­
ing field effect becomes important rapidly for increasing d 1 a 
due to the less trapping of electric flux in the dielectric sub­
strate for smaller cl/c. We see that the discrepancy between 
the quasi static approach and Galerkin's method remains 
substantial. Note that the quasi static approach is not asymp­
totic to Galerkin's method like the perturbative approach 
whendla-o. 

In Fig. 5, we plot the radiation pattern from the radi­
ation field. We note that the radiation field vanishes at the 
horizon (8 = 90°) due to the presence of the dielectric-air 
boundary. Radiation field derived using free-space Green's 
space does not vanish at the horizon. 2

.
3 

From the above, we can conclude that for accurate nu­
merical computation of the frequency shift, Galerkin's 
method remains superior. However, when d la is small and 
cl/c large, the perturbative approach is more efficient. The 
quasistatic approach is not as good since it gives the same 
fractional shift in resonant frequencies for different modes. 

APPENDIX 

Vector Hankel Transform 

The vector Hankel transform, transforms a vector func­
tion from one space to a vector function in another space. 
First, we shall postulate the form of such a transform. 

k:P In(kp P)] . [FI(kp )] , 

J~(kpp) F2(kp) 

(Ala) 
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We can write (Ala) asnd (Alb) more concisely as 

l(p) = LX' kp dkp Hn(kp p). F(kp), (A2a) 

x 

2 

J~(kp p)J~(kp pi) + ~Jn(kp p)Jn(kp pi) 
pPP 

Noting that 

(A2b) 

where Hn(kp p) are matrices, F(kp) andl(p) are vectors in 
(Ala) and (Alb). If(A1a) and (Alb) are true, it implies that 

l(p) = LX> kp dkp LX> pi dp' Hn(kp p) 

.Hn(kp pi) .J(p'). (A3) 

We can prove (A3) by exchanging the order of integra­
tion. Writing it explicitly, we have 

.!(p'), 

(A4) 

kp J~(kp p)J~(kp pi) + ~Jn(kp p)Jn(kp pi) = kp I n+ 1 (kp p)Jn +1 (kp pi) + ~~Jn(kp p)Jn(kp pi). (AS) 
~~ ~'~ 

The diagonal elements in (A4) can be evaluated since the 
first term in (AS) evaluates to a delta function (Ref. 19) while 
the second term evaluates to zero. Similarly, the off diagonal 
elements can be written as 

~ In(kp pi) J ~ (kp p) +!!.. I n (kp p) J ~ (kp pi) 
P P 

=~~Jn(kppl)Jn(k~p), (A6) 
pp dkp 

'¥hich integrates to give zero. Consequently, (A4) becomes 

LX> pi dp' fO k~ dk~ Hn(kpP) . Hn(kp pi) .J(p') 

= r p' d P' [ ~(p : p') ~(p ~ p) ]-l<P') = !(p), 

(A7) 

proving the assertion (A3). 
Properties of vector Hankel transform akin to that of 
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I 
scalar Hankel transform can be derived. We shaUlist some of 
the properties as follows: 

Property 1: (Symmetry) 

H~(kp p) = Hn(kp p). (AS) 

Property 2: (Delta-function representation) 

100 - - - 8(k - k I 

(a) pdpHn(kpp).Hn(k~p)=I p P, (A9a) 
o k~ 

foo - - I -8(p _pi) 
(b) Jo kp dkp Hn(kp p). Hn(kp p) = I pi . 

Property 3: (Reflection) 

(a)F( - kp) = (_1)n+ 1F(kp), 

(b)l( - p) = (_l)n +11(p). 

Property 4: (Parseval's Theorem) 

1'" pdplT(p).g(p) 
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(All) 

where F(kp ) and G(kp ) are vector Hankel transform ofJ( p) 
and g(p), respectively. 

Proof: By taking the transpose ofEq. (A2a) and making 
use of Property 1, we can show that 

JT(p) = 100 

kp dkp jiT(kp)' Hn(kp p). 

Thus, the left-hand side of (All) can be written as 

Loo 

pdpjT(p).g(p) 

= LX> pdp Loo kp dkp jiT(kp) . Hn(kp' p). 

(A12) 

(Al3) 

Exchanging the integrals and performing the p integration 
first, and making use of Property 2, we have 

(A14) 

proving Property 4. 
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